
Netcool/Impact
Version 6.1.1.4

Solutions Guide

SC14-7560-01

IBM

Netcool/Impact
Version 6.1.1.4

Solutions Guide

SC14-7560-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices”.

Edition notice

This edition applies to version 6.1.1.5 of IBM Tivoli Netcool/Impact and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Solutions Guide vii
Intended audience vii
Publications vii

Netcool/Impact library vii
Accessing terminology online vii
Accessing publications online viii
Ordering publications viii

Accessibility viii
Tivoli technical training viii
Support for problem solving ix

Obtaining fixes ix
Receiving weekly support updates ix
Contacting IBM Software Support x

Conventions used in this publication xii
Typeface conventions xii
Operating system-dependent variables and paths xii

Chapter 1. Solutions overview 1
Solution components 1

Data models 1
Working with services 1
Policies 1

Solution types 2
Event enrichment solution 2
X events in Y time solution 2
Event notification solution 2
Event gateway solution 3

Setting up a solution. 3
Creating a data model 3
Setting up services 3
Creating policies 3

Running a solution 4

Chapter 2. Working with data models . . 5
Data model components 5

Data sources 5
Configuring data types 5
Working with data items 6
Working with links 6

Setting up a data model 6
Data model architecture 7
Data model examples 7

Enterprise service model 8
Web hosting model 9

Working with data sources 10
Data sources overview. 10
Data source categories 10
Data source architecture 12
Setting up data sources 13

Working with data types 13
Data types overview 13
Data type categories 14
Data type fields 16
Data type keys 18
Setting up data types 18

Data type caching 32
Working with links 33

Links overview 33
Link categories 34
Static links. 34
Dynamic links 34
Setting up static links 35
Setting up dynamic links 36

Working with event sources 36
Event sources overview 36
ObjectServer event sources 37
Non-ObjectServer event sources 37
Event source architecture 37
Setting up ObjectServer event sources 38

Chapter 3. Working with services . . . 41
Services overview 41
Predefined services 41
User-defined services 42
Database event reader service 42
OMNIbus event reader service 42

OMINbus event reader architecture 43
OMNIbus event reader process 43
OMNIbus event reader configuration 44

Database event listener service 50
Setting up the database server 50
Database event listener service configuration
window 53
Sending database events 54
Writing database event policies 67

OMNIbus event listener service. 69
Setting up the OMNIbus event listener service . 69
How to check the OMNIbus event listener
service logs 70
Creating Triggers 70
Using the ReturnEvent function 71
Subscribing to individual channels 72
Controlling which events get sent over from
OMNIbus to Netcool/Impact using Spid . . . 72

Working with other services 73
Policy activator service 73
Policy logger service 74
Hibernating policy activator service 76
Command execution manager service 76
Command line manager service 77

Chapter 4. Working with policies . . . 79
Understanding policy language components . . . 79
Policy log 79
Policy context 79
Policy scope 79
Printing to the policy log 80
User-defined variables 80
Array 81
Context 83

© Copyright IBM Corp. 2006, 2016 iii

If statements 84
While statements 85
User-defined functions. 87
Scheduling policies 89

Running policies using the policy activator . . . 89
Running policies using schedules 90

Chapter 5. Handling events 95
Events overview. 95
Event containers 95
EventContainer variable 95
Event field variables 95
Event state variables 96
User-defined event container variables 96
Accessing event fields 96

Using the dot notation. 96
Using the @ notation 96

Updating event fields 96
Adding journal entries to events 97

Assigning the JournalEntry variable 97
Sending new events 98
Deleting events 99

Examples of deleting an incoming event from the
event source 99

Chapter 6. Handling data 101
Working with data items 101

Field variables 101
DataItem and DataItems variables 101

Retrieving data by filter 101
Working with filters 101
Retrieving data by filter in a policy 105

Retrieving data by key 107
Keys 107
Key expressions 107
Retrieving data by key in a policy 108

Retrieving data by link 109
Links overview 109
Retrieving data by link in a policy 109

Adding data 110
Example of adding a data item to a data type 111

Updating data 111
Example of updating single data items 112
Example of updating multiple data items . . . 112

Deleting data 113
Example of deleting single data items 113
Example of deleting data items by filter . . . 114
Example of deleting data items by item. . . . 114

Calling database functions 114

Chapter 7. Handling hibernations . . . 117
Hibernations overview 117
Hibernating a policy 117

Examples of hibernating a policy 117
Retrieving hibernations 118

Retrieving hibernations by action key search . . 118
Retrieving hibernations by filter 119

Waking a hibernation 119
Retrieving the hibernation 119
Calling ActivateHibernation 120

Example 120
Removing hibernations 120

Chapter 8. Sending email 121
Sending email overview 121
Sending an email 121

Chapter 9. Setting up instant
messaging 123
Netcool/Impact IM 123
Netcool/Impact IM components 123
Netcool/Impact IM process. 123

Message listening 123
Message sending 124

Setting up Netcool/Impact IM. 124
Writing instant messaging policies 124

Handling incoming messages 124
Sending messages 124
Example 124

Chapter 10. Executing external
commands 127
External command execution overview 127
Managing the JRExec server 127

Overview of the JRExec server 127
Starting the JRExec server 127
Stopping the JRExec server 128
The JRExec server configuration properties . . 128
JRExec server logging 129
Running commands using the JRExec server 129

Using CommandResponse 129

Chapter 11. Handling strings and
arrays 131
Handling strings 131

Concatenating strings 131
Finding the length of a string 131
Splitting a string into substrings 132
Extracting a substring from another string. . . 132
Replacing a substring in a string 133
Stripping a substring from a string 133
Trimming white space from a string 133
Changing the case of a string 134
Encrypting and decrypting strings 134

Handling arrays 134
Finding the length of an array. 134
Finding the distinct values in an array 135

Chapter 12. Event enrichment tutorial 137
Tutorial overview 137
Understanding the Netcool/Impact installation . . 137
Understanding the business data 138
Analyzing the workflow. 138
Creating the project 138
Setting up the data model 139

Creating the event source 139
Creating the data sources 140
Creating the data types 140
Creating a dynamic link 141

iv Netcool/Impact: Solutions Guide

Reviewing the data model 142
Setting up services 142

Creating the event reader 143
Reviewing the services 143

Writing the policy 143
Looking up device information 143
Looking up business departments 144
Increasing the alert severity 145
Reviewing the policy 146

Running the solution 146

Chapter 13. Configuring the Impact
policy PasstoTBSM 149
Overview. 149
Configuration 149
Exporting and Importing the ForImpactMigration
project. 150
Creating a policy 150
Creating a policy activator service 152
Create a new template and rule to collect weather
data 153
Create the CityHumidity rule for the CityWeather
template 154
Create a city service 155
Customizing a Service Tree portlet 156
Adding a custom Services portlet to a freeform
page 157

Chapter 14. Working with the
Netcool/Impact UI data provider . . . 159
Getting started with the UI data provider 159

UI data provider components 160
Configuring user authentication 161
Data types and the UI data provider 162
Integrating chart widgets and the UI data
provider 163
Names reserved for the UI data provider . . . 163
General steps for integrating the UI data
provider and the console 164

Accessing data from Netcool/Impact policies. . . 166
Configuring user parameters 166
Accessing Netcool/Impact object variables in a
policy 168
Accessing data types output by the GetByFilter
function 168
Accessing data types output by the DirectSQL
function 169
Accessing an array of Impact objects with the
UI data provider 171

UI data provider and the IBM Dashboard
Application Services Hub 173

Filtering data in the console 173
Integrating the tree widget with an Impact
object or an array of Impact objects 174
Integrating data from a policy with the topology
widget 177
Displaying status and percentage in a widget 179

Visualizing data from the UI data provider in the
console 181

Example scenario overview. 182

Visualizing data from the Netcool/Impact self
service dashboards 200

Installing the Netcool/Impact Self Service
Dashboard widgets 201
Editing an Input Form widget 202
Editing a Button widget 203

Reference topics 205
Large data model support for the UI data
provider 205
UI data provider customization 207
Accessing the Netcool/Impact UI data provider 209
Accessing data sources from a UI data provider 210
Accessing data sets from a UI data provider . . 210
Known issues with JavaScript and the UI data
provider 211
Running policies and accessing output
parameters 212
UI data provider URLs 212

Chapter 15. Working with OSLC for
Netcool/Impact 215
Introducing OSLC 216

OSLC resources and identifiers 217
OSLC roles 217

Working with data types and OSLC 218
Accessing Netcool/Impact data types as OSLC
resources 218
Retrieving OSLC resources that represent
Netcool/Impact data items 219
Displaying results for unique key identifier . . 221
OSLC resource shapes for data types 221
Configuring custom URIs for data types and
user output parameters 223

Working with the OSLC service provider 225
Creating OSLC service providers in
Netcool/Impact 226
Registering OSLC service providers with
Netcool/Impact 228
Registering OSLC resources 229

Working with Netcool/Impact policies and OSLC 238
Accessing output user parameters as OSLC
resources 238
Configuring custom URIs for policy results and
variables 248
Passing argument values to a policy. 250

Configuring hover previews for OSLC resources 250
Hover preview properties for OSLC resources 252

Example scenario: using OSLC with
Netcool/Impact policies 254
OSLC reference topics 255

OSLC urls 255
OSLC pagination 256
OSLC security 257
Support for OSLC query syntax 257
RDF functions 264

Chapter 16. Service Level Objectives
(SLO) Reporting 279
SLO terminology overview 280
SLO reporting prerequisites 281

Contents v

Installing and enabling SLO report package . . . 281
Defining service definition properties 283

Service definition properties file 284
Configuring the time zone 287

Configuring business calendars 289
Creating common properties in business
calendars 289
Business calendar properties file 291

Retrieving SLA metric data 292
SLO reporting policies 293
SLO reporting policy functions 293
Using the getDataFromTBSMAvailability sample
policy 296
Configuring getDataFromTBSMAvailability . . 297

Reports 297
Example SLO reporting configuration 298
Properties files examples 300

Operational hours service level example . . . 300
Single SLA example 301
Time zone example 301
Simple service definition example 302
Multiple identities in a service definition
example 303
Common US calendar properties 303
US Calendar example 304
Common calendar properties file example . . . 304
Canada calendar example 305
SLA Utility properties 305

SLO Utility Functions 306
Maintaining the reporting data in the SLORPRT
database 306
Removing service, SLA, and calendar definitions 306
Exporting service and calendar definitions. . . 307
Removing specific outage data 308
Restoring outage data 309
Setting SLO configuration values 310

Chapter 17. Configuring Maintenance
Window Management 313
Activating MWM in a Netcool/Impact cluster . . 313

Configure the MWM_Properties policy 313
Configuring MWMActivator service properties 314
Logging on to Maintenance Window
Management 315
About MWM maintenance windows 315

Chapter 18. Configuring Event
Isolation and Correlation 319
Overview. 319
Installing Netcool/Impact and the DB2 database 319
Installing the Discovery Library Toolkit. 320
Event Isolation and Correlation policies 321
Event Isolation and Correlation operator views . . 321
Configuring Event Isolation and Correlation data
sources 321
Configuring Event Isolation and Correlation data
types 322
Creating, editing, and deleting event rules. . . . 323

Creating an event rule 323
Configuring WebGUI to add a new launch point 324
Launching the Event Isolation and Correlation
analysis page 324
Viewing the Event Analysis 325

Appendix. Accessibility 327

Glossary 329
A 329
B 329
C 329
D 329
E 330
F 331
G 331
H 331
I. 331
J. 332
K 332
L 332
M 333
N 333
O 333
P 333
S 333
U 335
V 335
W 335
X 335

Index 337

vi Netcool/Impact: Solutions Guide

Solutions Guide

The Solutions Guide contains end-to-end information about using features in
Netcool/Impact.

Intended audience
This publication is for users who are responsible creating Netcool/Impact data
models, writing Netcool/Impact policies and running Netcool/Impact services.

Publications
This section lists publications in the Netcool/Impact library and related
documents. The section also describes how to access Tivoli® publications online
and how to order Tivoli publications.

Netcool/Impact library
v Quick Start Guide, CF39PML

Provides concise information about installing and running Netcool/Impact for
the first time.

v Administration Guide, SC14755901
Provides information about installing, running and monitoring the product.

v User Interface Guide, SC27485101
Provides instructions for using the Graphical User Interface (GUI).

v Policy Reference Guide, SC14756101
Contains complete description and reference information for the Impact Policy
Language (IPL).

v DSA Reference Guide, SC27485201
Provides information about data source adaptors (DSAs).

v Operator View Guide, SC27485301
Provides information about creating operator views.

v Solutions Guide, SC14756001
Provides end-to-end information about using features of Netcool/Impact.

v Integrations Guide, SC27485401
Contains instructions for integrating Netcool/Impact with other IBM® software
and other vendor software.

v Troubleshooting Guide, GC27485501
Provides information about troubleshooting the installation, customization,
starting, and maintaining Netcool/Impact.

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

© Copyright IBM Corp. 2006, 2016 vii

http://www.ibm.com/software/globalization/terminology

Accessing publications online
Publications are available from the following locations:
v The Quick Start DVD contains the Quick Start Guide. Refer to the readme file on

the DVD for instructions on how to access the documentation.
v Tivoli Information Center web site at http://publib.boulder.ibm.com/infocenter/

tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html. IBM posts
publications for all Tivoli products, as they become available and whenever they
are updated to the Tivoli Information Center Web site.

Note: If you print PDF documents on paper other than letter-sized paper, set
the option in the File → Print window that allows Adobe Reader to print
letter-sized pages on your local paper.

v Tivoli Documentation Central at http://www.ibm.com/tivoli/documentation.
You can access publications of the previous and current versions of
Netcool/Impact from Tivoli Documentation Central.

v The Netcool/Impact wiki contains additional short documents and additional
information and is available at https://www.ibm.com/developerworks/
mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact.

Ordering publications
You can order many Tivoli publications online at http://
www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site in the main panel to see an information page that

includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see “Accessibility,” on page 327.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

viii Netcool/Impact: Solutions Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1.1/welcome.html
http://www.ibm.com/tivoli/documentation
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education

Support for problem solving
If you have a problem with your IBM software, you want to resolve it quickly. This
section describes the following options for obtaining support for IBM software
products:
v “Obtaining fixes”
v “Receiving weekly support updates”
v “Contacting IBM Software Support” on page x

Obtaining fixes
A product fix might be available to resolve your problem. To determine which
fixes are available for your Tivoli software product, follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Navigate to the Downloads page.
3. Follow the instructions to locate the fix you want to download.
4. If there is no Download heading for your product, supply a search term, error

code, or APAR number in the search field.

For more information about the types of fixes that are available, see the IBM
Software Support Handbook at http://www14.software.ibm.com/webapp/set2/sas/
f/handbook/home.html.

Receiving weekly support updates
To receive weekly e-mail notifications about fixes and other software support news,
follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Click the My IBM in the toobar. Click My technical support.
3. If you have already registered for My technical support, sign in and skip to

the next step. If you have not registered, click register now. Complete the
registration form using your e-mail address as your IBM ID and click Submit.

4. The Edit profile tab is displayed.
5. In the first list under Products, select Software. In the second list, select a

product category (for example, Systems and Asset Management). In the third
list, select a product sub-category (for example, Application Performance &
Availability or Systems Performance). A list of applicable products is
displayed.

6. Select the products for which you want to receive updates.
7. Click Add products.
8. After selecting all products that are of interest to you, click Subscribe to email

on the Edit profile tab.
9. In the Documents list, select Software.

10. Select Please send these documents by weekly email.
11. Update your e-mail address as needed.
12. Select the types of documents you want to receive.
13. Click Update.

If you experience problems with the My technical support feature, you can obtain
help in one of the following ways:

Solutions Guide ix

http://www.ibm.com/software/support
http://www.ibm.com/software/support
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/support
http://www.ibm.com/software/support

Online
Send an e-mail message to erchelp@u.ibm.com, describing your problem.

By phone
Call 1-800-IBM-4You (1-800-426-4409).

World Wide Registration Help desk
For word wide support information check the details in the following link:
https://www.ibm.com/account/profile/us?page=reghelpdesk

Contacting IBM Software Support
Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. The type of software maintenance contract that you need depends on the
type of product you have:
v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational® products, and DB2® and WebSphere® products that run on
Windows or UNIX operating systems), enroll in Passport Advantage® in one of
the following ways:

Online
Go to the Passport Advantage Web site at http://www-306.ibm.com/
software/howtobuy/passportadvantage/pao_customers.htm .

By phone
For the phone number to call in your country, go to the IBM Worldwide
IBM Registration Helpdesk Web site at https://www.ibm.com/account/
profile/us?page=reghelpdesk.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at https://techsupport.services.ibm.com/ssr/
login.

v For customers with IBMLink, CATIA, Linux, OS/390®, iSeries, pSeries, zSeries,
and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the contacts page of the IBM Software Support Handbook on the Web at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html and
click the name of your geographic region for phone numbers of people who
provide support for your location.

To contact IBM Software support, follow these steps:
1. “Determining the business impact” on page xi
2. “Describing problems and gathering information” on page xi
3. “Submitting problems” on page xi

x Netcool/Impact: Solutions Guide

https://www.ibm.com/account/profile/us?page=reghelpdesk
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/techsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level. Use
the following criteria to understand and assess the business impact of the problem
that you are reporting:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact
on operations, or a reasonable circumvention to the problem was
implemented.

Describing problems and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:
v Which software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submitting problems
You can submit your problem to IBM Software Support in one of two ways:

Online
Click Submit and track problems on the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html. Type your
information into the appropriate problem submission form.

By phone
For the phone number to call in your country, go to the contacts page of
the IBM Software Support Handbook at http://www14.software.ibm.com/
webapp/set2/sas/f/handbook/home.html and click the name of your
geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
Software Support Web site daily, so that other users who experience the same
problem can benefit from the same resolution.

Solutions Guide xi

http://www.ibm.com/software/support/probsub.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

xii Netcool/Impact: Solutions Guide

Chapter 1. Solutions overview

A solution is an implementation of Netcool/Impact that provides a specific type of
event management functionality.

This section contains information about creating data sources, data types, services
and policies to set up event management. It also contains end-to-end information
about the following features in Netcool/Impact:
v Event enrichment
v Netcool/Impact using the PassToTBSM function to show data in TBSM gathered

from an Netcool/Impact policy.
v Netcool/Impact as a UI data provider.
v Visualizing data from the UI data provider in the IBM Dashboard Application

Services Hub in Jazz for Service Management.
v Visualizing data from the Netcool/Impact self service dashboards in the IBM

Dashboard Application Services Hub in Jazz for Service Management.
v Working with OSLC and Netcool/Impact.
v Setting up Service Level Objectives (SLO) Reporting.
v Configuring Event Isolation and Correlation.
v Configuring Maintenance Window Management.
v SLO reports.

Solution components
The components of a solution are a data model, services, and policies.

Most solutions use a combination of these three components.

Data models
A data model is a model of the business and metadata used in a Netcool/Impact
solution.

A data model consists of data sources, data types, data items, links, and event
sources.

Working with services
Services are runnable components of the Impact Server that you start and stop
using both the GUI and the CLI.

Policies
A policy is a set of operations that you want Netcool/Impact to perform.

These operations are specified using a one of the following programming
languages, JavaScript or a language called the Netcool/Impact policy language
(IPL).

© Copyright IBM Corp. 2006, 2016 1

Solution types
You can use Netcool/Impact to implement a wide variety of solution types. Some
common types are event enrichment, X events in Y time, event notification, and
event gateways.

Event enrichment solution
Event enrichment is the process by which Netcool/Impact monitors an event
source for new events, looks up information related to them in an external data
source and then adds the information to them.

An event enrichment solution consists of the following components:
v A data model that represents the data you want to add to events
v An OMNIbus event reader service that monitors the event source
v One or more event enrichment policies that look up information related to the

events and add the information to them

For a sample event enrichment solution, see Chapter 12, “Event enrichment
tutorial,” on page 137.

X events in Y time solution
X events in Y time is the process in which Netcool/Impact monitors an event
source for groups of events that occur together and takes the appropriate action
based on the event information.

An X events in Y time solution consists of the following components:
v A data model that contains internal data types used to store metadata for the

solution
v An OMNIbus event reader service that monitors the event source
v The hibernation activator service, which wakes hibernating policies at timed

intervals
v One or more policies that check the event source to see if a specified group of

events is occurring and then take the appropriate action

For information about removing disassociated files that result from XinY policy, see
the Troubleshooting Guide.

Event notification solution
Event notification is the process by which Netcool/Impact monitors an event
source for new events and then notifies an administrator or users when a certain
event or combination of events occurs.

Event notification is often part of a more complicated event management
automation that includes aspects of Netcool/Impact functionality.

An event notification solution has the following components:
v An event reader service that monitors the event source
v An e-mail sender service that sends e-mail to administrators or users, or the

JRExec server used to launch an external notification program
v One or more policies that perform the event notification

2 Netcool/Impact: Solutions Guide

Event gateway solution
An event gateway is an implementation of Netcool/Impact in which you send
event information from the ObjectServer to a third-party application for processing.

An event gateway solution has the following components
v A data model that includes a data source and data type representing the

third-party application
v An OMNIbus event reader service that monitors the event source
v One or more policies that send event information to the third-party application

Setting up a solution
To set up a Netcool/Impact solution, you create a data model, set up services, and
create policies.

For more information, see “Setting up a solution.”

Creating a data model
While it is possible to design a solution that does not require a data model, almost
all uses of Netcool/Impact require the ability to handle internal or external data of
some sort.

To create a data model, you create a data source for each real world source of data
that you want to use. Then, you create a data type for each structural element (for
example, a database table) that contains the data you want to use.

Alternatively, you can create dynamic links between data types or static links
between data items that make it easier to traverse the data programmatically from
within a policy.

Setting up services
Different types of solutions require different sets of services, but most solutions
require an OMNIbus event reader.

Solutions that use hibernations also require the hibernating policy activator.
Solutions that receive, or send email require an email reader and the email sender
service.

The first category of services is built in services like the event processor and the
command-line service manager. You can have only a single instance of this type of
service in Netcool/Impact. The second category is services like the event reader
and policy activator. You can create and configure multiple instances of this type of
service.

Creating policies
You create policies in the GUI Server, that contains a policy editor, a syntax
checker, and other tools you need to write, run, test, and debug your policies.

For more information, see Chapter 4, “Working with policies,” on page 79.

Chapter 1. Solutions overview 3

Running a solution
To start a solution, you start each of the service components.

Start the components in the following order:
v Hibernating policy activator, e-mail sender, and command execution manager.
v Event processor
v Event reader, event listener, e-mail reader, or policy activator

You can configure services to run automatically at startup, or you can start them
manually using the Tivoli Integrated Portal GUI and CLI. By default, services that
run automatically at startup run in the proper order. If all other services are
already running, starting services like the event processor that trigger policies
effectively starts the solution.

To stop a solution, you stop any services, like the event processor, that trigger your
policies.

4 Netcool/Impact: Solutions Guide

Chapter 2. Working with data models

You set up a data model once, when you first design your Netcool/Impact
solution.

After that, you do not need to actively manage the data model unless you change
the solution design. You can view, create, edit, and delete the components of a data
model in the GUI Server.

Data model components
A data model is made up of components that represent real world sources of data
and the actual data inside them.

Data sources
Data sources are elements of the data model that represent real world
sources of data in your environment.

Data types
Data types are elements of the data model that represent sets of data
stored in a data source.

Data items
Data items are elements of the data model that represent actual units of
data stored in a data source.

Links Links are elements of the data model that define relationships between
data types and data items.

Event sources
Event sources are special types of data sources. Each event source
represents an application that stores and manages events.

Data sources
Data sources are elements of the data model that represent real world sources of
data in your environment.

These sources of data include third-party SQL databases, LDAP directory servers,
or other applications such as messaging systems and network inventory
applications.

Data sources contain the information that you need to connect to the external data.
You create a data source for each physical source of data that you want to use in
your Netcool/Impact solution. When you create an SQL database, LDAP, or
Mediator data type, you associate it with the data source that you created. All
associated data types are listed under the data source in the Data Sources and
Types task pane.

Configuring data types
Data types are elements of the data model that represent sets of data stored in a
data source.

The structure of data types depends on the category of data source where it is
stored. For example, if the data source is an SQL database, each data type

© Copyright IBM Corp. 2006, 2016 5

corresponds to a database table. If the data source is an LDAP server, each data
type corresponds to a type of node in the LDAP hierarchy.

Working with data items
Data items are elements of the data model that represent actual units of data stored
in a data source.

The structure of this unit of data depends on the category of the associated data
source. For example, if the data source is an SQL database data type, each data
item corresponds to a row in a database table. If the data source is an LDAP
server, each data item corresponds to a node in the LDAP hierarchy.

Working with links
Links are elements of the data model that define relationships between data types
and data items.

Static links define relationships between data items, and dynamic links define
relationships between data types. Links are an optional component of the
Netcool/Impact data model.

Setting up a data model
To set up a data model, you must first determine what data you need to use in
your solution and where that data is stored. Then, you create a data source for
each real world source of data and create a data type for each structural element
that contains the data you need.

Procedure
1. Create data sources

Identify the data you want to use and where it is stored. Then, you create one
data source for each real world source of data. For example, if the data is
stored in one MySQL database and one LDAP server, you must create one
MySQL and one LDAP data source.

2. Create data types
After you have set up the data sources, you create the required data types. You
must create one data type for each database table (or other data element,
depending on the data source) that contains data you want to use. For example,
if the data is stored in two tables in an Oracle database, you must create one
data type for each table.

3. Optional: Create data items
For most data types, the best practice is to create data items using the native
tools supplied by the data source. For example, if your data source is an Oracle
database, you can add any required data to the database using the native
Oracle tools. If the data source is the internal data repository, you must create
data items using the GUI.

4. Optional: Create links
After you create data types, you can define linking relationships between them
using dynamic links. You can also define linking relationships between internal
data items using static links. That makes it easier to traverse the data
programmatically from within a policy. Use of links is optional.

5. Create event sources

6 Netcool/Impact: Solutions Guide

Most process events are retrieved from a Netcool/OMNIbus ObjectServer. The
ObjectServer is represented in the data model as an event source.

Data model architecture
This diagram shows the relationship between data sources, data types, and data
items in a Netcool/Impact solution.

Data model examples
The examples provided here are, most likely, scaled down versions of data models
you might be required to implement in the real world.

They are designed to give you an idea of how all the different parts of a data
model work together, rather than provide a realistic sampling of every type of data
you might access with Netcool/Impact.

If you are uncertain about the definition of major concepts mentioned in these
examples, such as data sources or data types, you can skip ahead to the next four
chapters of this book, which provide detailed information about the various
components of the data model. Once you have a better understanding of these
concepts, you can return to this section.

Figure 1. Data Model Architecture

Chapter 2. Working with data models 7

Enterprise service model
The enterprise service model is a data model that is designed for use in an
enterprise service environment.

The enterprise service environment is one of the most common network
management scenarios for the Netcool product suite. While the data model
described in this section is relatively simple, real world enterprise environments
can often rival a small telecommunications or ISP environment in complexity.

The goal of the data model in this example is to provide the means to access a set
of business data that has been previously collected and stored in an external
database. This business data contains information about the users, departments,
locations, and servers in the enterprise. If you were designing a complete solution
for this environment, you would tap into this data model from within policies
whenever you needed to access this data.

The enterprise service environment in this example consists of 125 users in five
business departments, spread over three locations. Each user in the environment
has a desktop computer and uses it to connect to a file server and an e-mail server.

The solution proposed to manage this environment is designed to monitor the file
servers and e-mail servers for uptime. When a file server goes down, it notifies the
on-call administrator through e-mail with a service request message. It also
determines which business units are served by the file server and sends an e-mail
to each user in the unit with a service interruption message. When an e-mail server
goes down, it notifies the on-call administrator through pager.

All the data used by this solution is stored in a MySQL database. This database
has six tables, named USER, ADMIN, DEPT, LOC, FILESERVER, and EMAILSERVER.

Enterprise service model elements
The enterprise service model consists of data sources, data types, data items, links,
and event sources.

Data sources
Because all the data needed is stored in a single MySQL database, this data
model only requires one data source. For the purposes of this example, the
data source is named MYSQL_01.

Data types
Each table in the MYSQL database is represented by a single SQL database
data type. For the purposes of this example, the data types are named
User, Admin, Department, Location, Fileserver, and Emailserver. In this
case, the names of the data types are the same as the table names.

Data items
Because the data is stored in an SQL database, the data items in the model
are rows in the corresponding database tables.

Links The relationship between the data types in this data model can be
described as a set of the following dynamic links:
v User -> Department
v User -> Location
v Location -> Emailserver
v Department -> Fileserver
v Emailserver -> Location.

8 Netcool/Impact: Solutions Guide

v Fileserver -> Departments
v Administrator -> Location

Event sources
This data model has a single event source, which represents the
Netcool/OMNIbus ObjectServer that stores events related to activity in
their environment.

Web hosting model
The Web hosting model is a data model designed for use in a Web hosting
environment.

The Web hosting environment is another common network management scenario
for the Netcool product suite. Managing a Web hosting environment presents some
unique challenges. This is because it requires you to assure the uptime of services,
such as the availability of customer Web sites, that consist of groups of interrelated
software and hardware devices, in addition to assuring the uptime of the devices
themselves. As with the other examples in this chapter, the web services hosting
environment described here is scaled down from what you might encounter in the
real world.

The goal of the data model in this example is to provide the means to access a set
of device inventory and service management data that is generated and updated in
real time by a set of third-party application. This data contains information about
the server hardware located in racks in the hosting facility and various other data
that describes how instances of HTTP and e-mail server software is installed and
configured on the hardware. As with the previous example, policies developed for
use with this information would tap into this data model whenever they needed to
access this data.

The Web services hosting model in this example consists of 10 HTTP server
clusters and three e-mail servers clusters, spread over 20 machines. Each HTTP
cluster and each e-mail cluster consist of one primary and one backup server. This
environment serves 15 customers whose use is distributed across one or more
clusters depending on their service agreement.

The solution that manages this environment is designed to monitor the uptime of
the HTTP and e-mail services. When a problem occurs with one of these services,
it determines the identity of the cluster that is causing the problem and the
hardware where the component server instances are installed. It then modifies the
original alert data in Netcool/OMNIbus to reflect this information. This solution
also determines the customer that is associated with the service failure and sets the
priority of the alert to reflect the customer's service agreement.

The data in this model is stored in two separate Oracle databases. The first
database has five tables named Node, HTTPInstance, HTTPCluster, EmailInstance,
and EmailCluster. The second database is a customer service database that has,
among other tables, one named Customer.

Web hosting model elements
The Web hosting model consists of data sources, data types, data items, and links.

Data sources
Because this model has two real world sources of data, it requires two data
sources. For this example, these sources are called ORACLE_01 and
ORACLE_02.

Chapter 2. Working with data models 9

Data types
Each table in the MySQL database is represented by a single SQL database
data type. For the purposes of this example, the data types are named
Node, HTTPInstance, HTTPCluster, EmailInstance, EmailCluster, and
Customer.

Data items
Because the data is stored in an SQL database, the data items in the model
are rows in the corresponding database tables.

Links The relationship between the data types in this data model can be
described as a set of the following dynamic links:
v HTTPServer -> Node
v EmailServer -> Node
v HTTPServer -> HTTPCluster
v EmailServer -> EmailCluster
v Customer -> HTTPCluster
v Customer -> HTTPServer

Working with data sources
A data source is an element of the data model that represents a real world source
of data in your environment.

Data sources overview
Data sources provide an abstract layer between Netcool/Impact and real world
source of data.

Internally, data sources provide connection and other information that
Netcool/Impact uses to access the data. When you create a data model, you must
create one data source for every real world source of data you want to access in a
policy.

The internal data repository of Netcool/Impact can also be used as a data source.

Data source categories
Netcool/Impact supports four categories of data sources.

SQL database data sources
An SQL database data source represents a relational database or another
source of data that can be accessed using an SQL database DSA.

LDAP data sources
The Lightweight Directory Access Protocol (LDAP) data source represent
LDAP directory servers.

Mediator data sources
Mediator data sources represent third-party applications that are integrated
with Netcool/Impact through the DSA Mediator.

JMS data sources
A Java™ Message Service (JMS) data source abstracts the information that is
required to connect to a JMS Implementation.

10 Netcool/Impact: Solutions Guide

SQL database data sources
An SQL database data source represents a relational database or another source of
data that can be accessed using an SQL database DSA.

A wide variety of commercial relational databases are supported, such as Oracle,
Sybase, and Microsoft SQL Server. In addition, freely available databases like
MySQL, and PostgreSQL are also supported. The Netcool/OMNIbus ObjectServer
is also supported as a SQL data source.

The configuration properties for the data source specify connection information for
the underlying source of data. Some examples of SQL database data sources are:
v A DB2 database
v A MySQL database
v An application that provides a generic ODBC interface
v A character-delimited text file

You create SQL database data sources using the GUI. You must create one such
data source for each database that you want to access. When you create an SQL
database data source, you need to specify such properties as the host name and
port where the database server is running, and the name of the database. For the
flat file DSA and other SQL database DSAs that do not connect to a database
server, you must specify additional configuration properties.

Note that SQL database data sources are associated with databases rather than
database servers. For example, an Oracle database server can host one or a dozen
individual databases. Each SQL database data source can be associated with one
and only one database.

LDAP data sources
The Lightweight Directory Access Protocol (LDAP) data source represent LDAP
directory servers.

Netcool/Impact supports the OpenLDAP and Microsoft Active Directory servers.

You create LDAP data sources in the GUI Server. You must create one data source
for each LDAP server that you want to access. The configuration properties for the
data source specify connection information for the LDAP server and any required
security or authentication information.

Mediator data sources
Mediator data sources represent third-party applications that are integrated with
Netcool/Impact through the DSA Mediator.

These data sources include a wide variety of network inventory, network
provisioning, and messaging system software. In addition, providers of XML and
SNMP data can also be used as mediator data sources.

Typically Mediator DSA data sources and their data types are installed when you
install a Mediator DSA. The data sources are available for viewing and, if
necessary, for creating or editing.

Attention: For a complete list of supported data source, see your IBM account
manager.

Chapter 2. Working with data models 11

Internal data repository
The internal data repository is a built-in data source for Netcool/Impact.

The primary responsibility of the internal data repository is to store system data.

Restriction: You must use internal data types solely for testing and demonstrating
Netcool/Impact, or for low load tasks.

JMS data source
A Java Message Service (JMS) data source abstracts the information that is required
to connect to a JMS Implementation.

This data source is used by the JMSMessageListener service, the SendJMSMessage,
and ReceiveJMSMessage functions.

Data source architecture
This diagram shows the relationship between Netcool/Impact, data sources, and
the real world source of data in your environment.

Figure 2. Data Source Architecture

12 Netcool/Impact: Solutions Guide

Setting up data sources
When you create a Netcool/Impact data model, you must set up a data source for
each real world source of data in your environment.

You set up data sources using the Tivoli Integrated Portal GUI. To set up a data
source, you need to get the connection information for the data source, and then
use the GUI to create and configure the data source.

Getting the connection information
Before you create an event source, you must get the connection information for the
underlying application.

The connection information you need varies depending on the type of event
source. For most SQL database data sources, this information is the host name and
the port where the application is running, and a valid user name and password.
For LDAP and Mediator data sources, see the DSA Reference Guide for the
connection information required.

When you have the connection information for the underlying application, you can
create the data source using the Tivoli Integrated Portal GUI.

Creating data sources
Use this procedure to create a user-defined data source.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. From the Cluster and Project lists, select the cluster and project you want to

use.
3. In the Data Model tab, click the New Data Source icon in the toolbar. Select a

template for the data source that you want to create. The tab for the data
source opens.

4. Complete the required information, and click Save to create the data source.

Working with data types
Data types are an element of the data model that represent sets of data stored in a
data source.

Data types overview
Data types describe the content and structure of the data in the data source table
and summarize this information so that it can be accessed during the execution of
a policy.

Data types provide an abstract layer between Netcool/Impact and the associated
set of data in a data source. Data types are used to locate the data you want to use
in a policy. For each table or other data structure in your data source that contains
information you want to use in a policy, you must create one data type. To use a
data source in policies, you must create data types for it.

Attention: Some system data types are not displayed in the GUI. You can manage
these data types by using the Command Line Interface (CLI).

Chapter 2. Working with data models 13

The structure of the data that is stored in a data source depends on the category of
the data source where the data is stored. For example, if the data source is an SQL
database, each data type corresponds to a database table. If the data source is an
LDAP server, each data type corresponds to a type of node in the LDAP hierarchy.

A data type definition contains the following information:
v The name of the underlying table or other structural element in the data source
v A list of fields that represent columns in the underlying table or another

structural element (for example, a type of attribute in an LDAP node)
v Settings that define how Netcool/Impact caches data in the data type

Data type categories
Netcool/Impact supports four categories of data types.

SQL database data types
SQL database data types represent data stored in a database table.

LDAP data types
LDAP data types represent data stored at a certain base context level of an
LDAP hierarchy.

Mediator data types
Mediator data types represent data that is managed by third-party
applications such as a network inventory manager or a messaging service.

Internal data types
You use internal stored data types to model data that does not exist, or
cannot be easily created, in external databases.

SQL database data types
SQL database data types represent data stored in a database table.

Each data item in an SQL database data type corresponds to a row in the table.
Each field in the data item corresponds to a column. An SQL database data type
can include all the columns in a table or just a subset of the columns.

LDAP data types
LDAP data types represent data stored at a certain base context level of an LDAP
hierarchy.

Each data item in an LDAP data type corresponds to an LDAP node that exists at
that level and each field corresponds to an LDAP attribute. LDAP data types are
read-only, which means that you cannot add, update or delete data items in an
LDAP data type.

Mediator data types
Mediator data types represent data that is managed by third-party applications
such as a network inventory manager or a messaging service.

Typically, Mediator data types do not represent data stored in database tables.
Rather, they represent collections of data that are stored and provided by the data
source in various other formats. For example, sets of data objects or as messages.

These data types are typically created using scripts or other tools provided by the
corresponding DSA. For more information about the mediator data types used
with a particular DSA, see the DSA Reference Guide.

14 Netcool/Impact: Solutions Guide

Internal data types
You use internal stored data types to model data that does not exist, or cannot be
easily created, in external databases.

This includes working data used by policies, which can contain copies of external
data or intermediate values of data. This data is stored directly in a data repository,
and you can use it as a data source. To create and access this data you define
internal data types.

Netcool/Impact provides the following categories of internal data types:

System data types
System data types are used to store and manage data used internally by
Netcool/Impact.

Predefined internal data types
Pre-defined data types are special data types that are stored in the global
repository.

User-defined internal data types
Internal data types that you create are user-defined internal data types.

Restriction: Use internal data types only for prototyping and demonstrating
Netcool/Impact.

System data types:

System data types are used to store and manage data used internally by
Netcool/Impact.

These types include Policy, Service, and Hibernation. In most cases, you do not
directly access the data in these data types. However, there are some occasions in
which you can use them in a policy. Some examples are when you start a policy
from within another policy or work with hibernating policies.

Predefined internal data types:

Pre-defined data types are special data types that are stored in the global
repository.

The following predefined internal data types are provided:
v Schedule

v TimeRangeGroup

v Document

You use Schedule and TimeRangeGroup data types to manage Netcool/Impact
scheduling. You can use the Document data type to store information about URLs
located on your intranet.

Predefined data types are special data types that are stored in Netcool/Impact. The
non-editable pre-defined data types are:
v TimeRangeGroup
v LinkType
v Hibernation

The following predefined data types can be edited to add new fields:

Chapter 2. Working with data models 15

v Schedule
v Document
v FailedEvent
v ITNM

Restriction: You cannot edit or delete existing fields. None of the pre-defined data
types can be deleted.

User-defined internal data types:

Internal data types that you create are user-defined internal data types.

The data items in these data types are stored in the internal data repository, rather
than in an external data source. User-defined data types function in much the same
way as SQL database data types. You must use internal data types solely for
testing and demonstrating Netcool/Impact, or for low load tasks. User-defined
internal data types are slower than external SQL database data types.

Data type fields
A field is a unit of data as defined within a data type. The nature of this unit of
data depends on the category of the data type that contains it.

If the data type corresponds to a table in an SQL database, each field corresponds
to a table column. If the data type corresponds to a base context in an LDAP
server, each field corresponds to a type of LDAP attribute.

When you set up an SQL database data type, the fields are auto-populated from
the underlying table by Netcool/Impact. For other data types, you must manually
define the fields when the data type is created.

ID
The ID attribute specifies the internal name used by Netcool/Impact to refer to the
field.

By default, the field ID is the same as the name of the data element that
corresponds to the field in the underlying data source. For example, if the data
type is an SQL database data type, the underlying field corresponds to a column in
the table. By default, the field ID is the same as the column name in the database.

You can change the field ID to any other unique name. For example, if the
underlying column names in the data source are not human-readable, or are
difficult to type and remember, you can use the ID field to provide a more
easy-to-use alias for the field.

The field ID overrides the actual name and display name attributes for the field in
all cases.

Field name
The field name attribute is the name of the corresponding data element in the
underlying data source.

Although you can use the Tivoli Integrated Portal GUI to freely edit this field, it
must be identical to how it displays in the data source. If these fields are not
identical, an error occurs when the data type is accessed.

16 Netcool/Impact: Solutions Guide

Format
The format is the data format of the field.

For SQL database data types, Netcool/Impact auto-discovers the columns in the
underlying table and automatically deduces the data format for each field when
you set up the data type. For other data types, you must manually specify the
format for each field that you create.

Table 1 shows the supported data formats:

Table 1. Supported data formats

Format Description

STRING Represents text strings up to 4 KB in length.

INTEGER Represents whole numbers.

LONG Represents long whole numbers.

FLOAT Represents floating point decimal numbers.

DOUBLE Represents double-precision floating point decimal numbers.

DATE Represents formatted date/time strings.

TIMESTAMP Represents a timestamp in the following format, YYYY-MM-DD
HH:MM:SS.
Restriction: The Microsoft SQL server table treats the
TIMESTAMP field as a non-date time field. The JDBC driver
returns the TIMESTAMP field as a row version binary data
type, which is discovered as STRING in the Microsoft SQL
server data type. To resolve this issue, in the Microsoft SQL
server table, use DATEITEM to display the property time
format instead of TIMESTAMP.

BOOLEAN Represents Boolean values of true and false.

CLOB Represents large-format binary data.

LONG_STRING Represents text strings up to 16 KB in length (internal data
types only).

PASSWORD_STRING Represents password strings (internal data types only). The
password shows in the GUI as a string of asterisks, rather
than the actual password text.

Display name
You can use the display name attribute to specify a label for the field that is
displayed only when you browse data items in the GUI. This attribute does not
otherwise affect the functions of the data type.

You can use this field to select a field from the menu to label data items according
to the field value. Choose a field that contains a unique value that can be used to
identify the data item for example, ID. To view the values on the data item you
need to go to View Data Items for the data type and select the Links icon. Click
the data item to display the details.

Description
You can use the description attribute to specify a short description for the field.

This description is only visible when you use the GUI to edit the data type. Like
the display name, it does not otherwise affect the functions of the data type.

Chapter 2. Working with data models 17

Data type keys
Key fields are fields whose value or combination of values can be used to identify
unique data items in a data type.

For SQL database data types, you must specify at least one key field for each data
type you create. Most often, the key field that you specify is a key field in the
underlying data source. Internal data items contain a default field named KEY that
is automatically used as the data type key.

You can use the policy function called GetByKey to retrieve data from the data type
using the key field value as a query condition. Keys are also used when you create
GetByKey dynamic links between data types.

Setting up data types
When you create a data model, you must set up a data type for each structural
element in a data source whose data you want to use.

For example, if you are using an SQL database data source, you must set up a data
type for each table that contains the data. If you are using an LDAP data source,
you must set up a data type for each base context in the LDAP hierarchy that
contains nodes that you want to access. You set up data types using the Tivoli
Integrated Portal GUI.

To set up a data type, you get the name of the structural element (for example, the
table) where the data is located, and then use the GUI to create and configure the
data type.

Getting the name of the structural element
If the data type is an SQL database data type, you must know the fully qualified
name of the underlying table in the database before you can set it up.

This name consists of the database name and the table name. Some databases use
case-sensitive table names, so make sure that you record the proper case when you
get this information. If the data type is an LDAP data type, you must know the
name of the base context level of the LDAP hierarchy where the nodes you want to
access are located.

Configuring internal data types
This procedure uses an Administrator internal data type as an example.

About this task

To define the data type for Administrator, you specify the attributes (fields) that
you want listed for every administrator, perhaps a name, a pager number, and an
e-mail address. Then you create data items: the names, pager numbers, and e-mail
addresses of the administrators. For internal data types, these attributes are the
actual data items for the data type.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation >

Data Model, to open the Data Model tab.
Since internal data is stored in Netcool/Impact, it is not necessary to first
configure a data source connection.

18 Netcool/Impact: Solutions Guide

2. Select the data source that you want to create a data type for, right-click the
data source and click New Data Type .

3. Enter the information in the Custom Fields tab General Settings section.
Click Save.

4. To add additional fields to the data type:
a. In the Additional Fields section of the tab, click the New button.
b. Enter the information in the window.
c. Continue to add fields to the table as appropriate.
d. From the Display Name Field list situated under the Additional Fields

table, you can select a field name that you want to use to name a data item
elsewhere in the GUI.

e. When you are finished, click Save in the editor toolbar.
5. In the Dynamic Links tab configure dynamic links. For information about

dynamic links tab, see the section on“Working with links” on page 6.

Internal data type configuration window:

Use this information to configure an internal data type.

Table 2. General settings on the New Internal Data Type Editor Custom Fields tab

Editor element Description

Data Type Name Type a unique name to identify the data
type. Only letters, numbers, and the
underscore character must be used in the
data type name. If you use UTF-8 characters,
make sure that the locale on the Impact
Server where the data type is saved is set to
the UTF-8 character encoding.

If you receive an error message when you
save a data type, check the Global tab for a
complete list of data type names for the
server. If you find the name you have tried
to save, you must change it.

State: Persistent Leave the box checked as Persistent
(permanent) to permanently store the data
items that are created for this data type.
When the server is restarted, the data is
restored. If the box is cleared, the data is
held in memory, but only while the server is
running. When the server restarts, the data
is lost because it was not backed up in a file.
This feature is useful if you need data only
on a temporary basis and then want to
discard it.

Persistent data types are always written to
file. Therefore, making internal data types
temporary is faster.

New Field Click to add a field to the table.

Chapter 2. Working with data models 19

Table 2. General settings on the New Internal Data Type Editor Custom Fields
tab (continued)

Editor element Description

Access the data through UI data provider:
Enabled

To ensure that the UI data provider can
access the data in this data type, select the
Access the data through UI data provider:
Enabled check box. When you enable the
check box, the data type sends data to the
UI data provider. When the data model
refreshes, the data type is available as a data
provider source. The default refresh rate is 5
minutes. For more information about UI
data providers, see the Solutions Guide.

Table 3. Additional settings on the New Internal Data Type Editor Custom Fields tab

Editor element Description

ID Type a unique ID for the field.

Field Name Type the actual field name. This can be the
same as the ID. You can reference both the
ID field and the Field Name field in
policies.

If you do not enter a Display Name,
Netcool/Impact uses the ID field name by
default.

Format Select a format for the field from the Format
list:

Display Name Field: You can use this field to select a field from
the menu to label data items according to
the field value. Choose a field that contains
a unique value that can be used to identify
the data item for example, ID. To view the
values on the data item you need to go to
View Data Items for the data type and
select the Links icon. Click the data item to
display the details.

Description Type some text that describes the field.

Table 4. UI data provider settings on the Internal Data Type Editor Custom Fields tab

Editor element Description

Define Custom Types and Values
(JavaScript)

To show percentages and status in a widget,
you must create a script in JavaScript
format. The script uses the following syntax.

ImpactUICustomValues.put
("FieldName,Type",VariableName);

Add the script to the Define Custom Types
and Values (JavaScript) area.

Preview Script Sample Result Click the Preview Script Sample Result
button to preview the results and check the
syntax of the script. The preview shows a
sample of 10 rows of data in the table.

20 Netcool/Impact: Solutions Guide

SQL data types
SQL data types define real-time dynamic access to data in tables in a specified SQL
database.

When the database is accessed, the fields from the database schema are assigned to
the data type. Some of the SQL data sources automatically discover the fields in
the table. Others do not support automatic table discovery; for these data sources,
you must enter the table name to see the names of the fields.

The editor contains three tabs.

Table 5. External data type editor tabs

Tab Description

Table
Description

Name the data type, change the data source, if necessary, and add any
number of fields from the data source to form a database table.

Dynamic Links In this tab you can create links to other data types, both external and
internal, to establish connections between information.

Links between individual data items can represent any relationship
between the items that policies must be able to look up. For example, a
node linked to an operator allows a policy to look up the operator
responsible for the node.

For more information about dynamic links tab, see “Working with links”
on page 6.

Cache Settings In this tab, you can set up caching parameters to regulate the flow of
data between Netcool/Impact and the external data source.

Use the guidelines in “SQL data type configuration window - Cache
settings tab” on page 27, plus the parameters for the performance report
for the data type to configure data and query caching.

Important: SQL data types in Netcool/Impact require all columns in a database
table to have the Select permission enabled to allow discovery and to enable the
save option when creating data types.

Configuring SQL data types:

Use this procedure to configure an SQL data type.

Procedure

v Provide a unique name for the data type.
v Specify the name of the underlying data source for the data type.
v Specify the name of the database and the table where the underlying data is

stored.
v Auto-populate the fields in the data type.
v Select a display name for the data type.
v Specify key fields for the data type.
v Optional: Specify a data item filter.
v Optional: Specify which field in the data type to use to order data items.
v Optional: Specify the direction to use when ordering data items.

Chapter 2. Working with data models 21

What to do next

After you have saved the data type, you can close the Data Type Editor or you can
configure caching and dynamic links for the data type.

SQL data type configuration window - Table Description tab:

Use this information to configure the SQL data type.

Table 6. General settings for the Table Descriptions tab of the SQL data type configuration
window

Editor element Description

Data Type Name Type a unique name to identify the data
type. Only letters, numbers, and the
underscore character must be used in the
data type name. If you use UTF-8 characters,
make sure that the locale on the Impact
Server where the data type is saved is set to
the UTF-8 character encoding.

Data type names must be unique globally,
not just within a project. If you receive an
error message when saving a data type,
check the Global project tab for a complete
list of data type names for the server. If you
find the name you tried to save, you need to
change it.

Data Source: Name This field is automatically populated, based
on the data source you selected in the data
sources tab. If you have other SQL data
sources that are configured to use with
Netcool/Impact, you can change the name
to any of the SQL data sources in the list, if
necessary.

If you enter a new name, a message window
prompts you to confirm your change.

Click OK to confirm the change. If you
change your mind about selecting a different
data source, click Cancel.

State: Enabled Leave the State check box checked to
activate the data type so that it is available
for use in policies.

Access the data through UI data provider:
Enabled

To ensure that the UI data provider can
access the data in this data type, select the
Access the data through UI data provider:
Enabled check box. When you enable the
check box the data type sends data to the UI
data provider. When the data model
refreshes, the data type is available as a data
provider source. The default refresh rate is 5
minutes. For more information about UI
data providers, see the Solutions Guide.

22 Netcool/Impact: Solutions Guide

Table 7. Table description settings for the Table Descriptions tab of the SQL data type
configuration window

Window element Description

Base Table Specify the underlying database and table
where the data in the data type is stored.

The names of all the databases and tables
are automatically retrieved from the data
source so that you can choose them from a
list.

Type the name of the database and the table
in the Base Table lists. The first list contains
the databases in the data source. The second
list contains the tables in the selected
database, for example, alerts, and status.

Refresh Click Refresh to populate the table.

The table columns are displayed as fields in
a table. To make database access as efficient
as possible, delete any fields that are not
used in policies.

Add Deleted Fields If you have deleted fields from the data type
that still exist in the SQL database, these
fields do not show in the user interface. To
restore the fields to the data type, mark the
Add Deleted Fields check box and click
Refresh.

New Field Use this option if you need to add a field to
the table from the data source database. For
example, in the case where the field was
added to the database after you created the
data type.

Make sure that the field name you add has
the same name as the field name in the data
source.
Important: Any new fields added to this
table are not automatically added to the data
source table. You cannot add fields to the
database table in this way.

For more information, see “SQL data type
configuration window - adding and editing
fields in the table” on page 25.

Chapter 2. Working with data models 23

Table 7. Table description settings for the Table Descriptions tab of the SQL data type
configuration window (continued)

Window element Description

Key field Key fields are used when you retrieve data
from the data type in a policy that uses the
GetByKey function. They are also used when
you define a GetByKey dynamic link.
Important: You must define at least one key
field for the data type, even if you do not
plan to use the GetByKey function in your
policy. If you do not, Netcool/Impact does
not function properly.

Generally, the key fields you define
correspond to key fields in the underlying
database table.

To specify a key field, click the check box in
the appropriate row in the Key Field
column. You can add multiple key fields.

Display Name Field You can use this field to select a field from
the menu to label data items according to
the field value. Choose a field that contains
a unique value that can be used to identify
the data item for example, ID. To view the
values on the data item you need to go to
View Data Items for the data type and
select the Links icon. Click the data item to
display the details.

Automatically Remove Deleted Fields Mark the Automatically Remove Deleted
Fields check box to remove any fields from
the data type that have already been
removed from the SQL database. This
happens automatically when a policy that
uses this data type is run.

Table 8. Data filtering and ordering settings for the Table Descriptions tab of the SQL data
type configuration window

Window element Descriptions

Filter Type a restriction clause to limit the types of
data items that are seen for the data type.
For example, to limit the rows in a field that
is called City to New York, you would enter:

City = "New York"

For example, to limit the rows to the New
York or Athens, you would enter:

City = "New York" OR City = "Athens"

You can use any sql Where clause syntax.

Order By Enter the names of one or more fields to use
when sorting data items retrieved from the
data source.

24 Netcool/Impact: Solutions Guide

Table 9. UI data provider settings on the Table Descriptions tab of the SQL data type
configuration window.

Editor element Description

Define Custom Types and Values
(JavaScript)

To show percentages and status in a widget,
you must create a script in JavaScript
format. The script uses the following syntax.

ImpactUICustomValues.put
("FieldName,Type",VariableName);

Add the script to the Define Custom Types
and Values (JavaScript) area.

Preview Script Sample Result Click the Preview Script Sample Result
button to preview the results and check the
syntax of the script. The preview shows a
sample of 10 rows of data in the table.

SQL data type configuration window - adding and editing fields in the table:

Use this information to add or edit a field to the table for a SQL data type.

In the Table tab, in the New Field area, click New to add a field to the data type,
or select the edit icon next to an existing field that you want to edit.

Table 10. External data type Editor - New field window

Window element Description

ID By default, the ID is the same as the column name in the database.
You can change it to any other unique name. For example, if the
underlying column names in the data source are difficult to use, the
ID field to provide an easier alias for the field.

Field Name Type a name that can be used in policies. It represents the name in
the SQL column. Type the name so that it is identical to how it is
displayed in the data source. Otherwise, Netcool/Impact reports an
error when it tries to access the data type.

Chapter 2. Working with data models 25

Table 10. External data type Editor - New field window (continued)

Window element Description

Format For SQL database data types, Netcool/Impact automatically
discovers the columns in the underlying table and automatically
detects the data format for each field when you set up the data
type. For other data types, you must manually specify the format
for each field that you create. For more information about formats,
see the Working with data types chapter in the Solutions Guide.

Restriction: The Microsoft SQL server table treats the TIMESTAMP
field as a non-date time field. The JDBC driver returns the
TIMESTAMP field as a row version binary data type, which is
discovered as STRING in the Microsoft SQL server data type. To
resolve this issue, in the Microsoft SQL server table, use DATEITEM
to display the property time format instead of TIMESTAMP.

Select a format from the following list:

v STRING

v LONG_STRING

v INTEGER

v PASSWORD_STRING

v LONG

v FLOAT

v DOUBLE

v DATE

v TIMESTAMP

v BOOLEAN

v CLOB

Display Name You can use this field to select a field from the menu to label data
items according to the field value. Choose a field that contains a
unique value that can be used to identify the data item for
example, ID. To view the values on the data item you need to go to
View Data Items for the data type and select the Links icon. Click
the data item to display the details.

If you do not enter a display name, Netcool/Impact uses the ID
field name by default.

Description Type some text that describes the field. This description is only
visible when you edit the data type in the GUI.

Default Value Type a default expression for the field. It can be any value of the
specified format see the format row, or it can be a database-specific
identifier such as an Oracle pseudonym; sequence.NEXTVAL.

26 Netcool/Impact: Solutions Guide

Table 10. External data type Editor - New field window (continued)

Window element Description

Insert Statements:
Exclude this field

When you select the Exclude this Field check box Netcool/Impact
does not set the value for the field when inserting and updating a
new data item into the database. This field is used for insert and
update statements only, not for select statements.

Sybase data types:

You must select this option when you map a field to an Identity
field or a field with a default value in a Sybase database.
Otherwise, Netcool/Impact overwrites the field on insert with the
specified value or with a space character if no value is specified.

ObjectServer data types:

The Tally field automatically selects the Exclude this Field check
box to be excluded from inserts and updates for the object server
data type since this field is automatically set by Netcool®/OMNIbus
to control deduplication of events.

The Serial field automatically selects the Exclude this Field check
box to be excluded from inserts and updates when an ObjectServer
data type points to alerts.status.

Type Checking:
Strict

Click to enable strict type checking on the field. Netcool/Impact
checks the format of the value of the field on insertion or update to
ensure that it is of the same format as the corresponding field in
the data source. If it is not the same, Netcool/Impact does not
check the value on insertion or update and a message to that effect
is displayed in the server log. If you do not enable strict type
checking, all type checking and format conversions are done at the
data source level.

SQL data type configuration window - Cache settings tab:

Use this information to configure caching for a SQL data type.

Table 11. External Data Type Cache Settings tab - caching types

Cache type Description

Enable Data Caching This check box toggles data caching on and off.

Maximum number of data items Set the total number of data items to be stored in
the cache during the execution of the policy.

Invalidate Cached Data Items After Set to invalidate the cached items after the time
periods selected.

Enable Query Caching This check box toggles query caching on and off.

Maximum number of queries Set the maximum number of database queries to
be stored in the cache.

Invalidate Cached Queries After Set to invalidate the cached items after the time
periods selected.

Enable Count Cashing Do not set. Available for compatibility with
earlier versions only.

Performance Measurements Intervals Use this option to set the reporting parameters
for measuring how fast queries against a data
type are executed.

Chapter 2. Working with data models 27

Table 11. External Data Type Cache Settings tab - caching types (continued)

Cache type Description

Polling Interval Select a polling interval for measuring
performance statistics for the data type.

Query Interval Select the query interval for the performance
check.

Auto-populating the data type fields:

After you have specified the name of the database and table, the next step is to
auto-populate the data type fields.

You can also specify the fields manually in the same way that you do for internal
data types, but in most cases, using the auto-populate feature saves time and
ensures that the field names are accurate.

When you auto-populate data type fields, the table description is retrieved from
the underlying data source, and a field in the data type is created for each column
in the table. The ID, actual name, and display name for the fields are defined using
the exact column name as it appears in the table.

A set of built-in rules is used to determine the data format for each of the
auto-populated fields. Columns in the database that contain text data, such as
varchar, are represented as string fields. Columns that contain whole numbers,
such as int and integer, are represented as integer fields. Columns that contain
decimal numbers are represented as float fields. Generally, you can automatically
assign the formats for data type fields without having to manually attempt to
recreate the database data formats in the data type.

If you only want a subset of the fields in a table to be represented in the data type,
you can manually remove the unwanted fields after auto-population. Removing
unwanted fields can speed the performance of a data type.

To auto-populate data type fields, you click the Refresh button in the Table
Description area of the Data Type tab. The table description is retrieved from the
data source, and the fields are populated. The fields are displayed in the Table
Description area.

After you auto-populate the data type fields, you can manually change the
attributes of any field definition. Do not change the value of the actual name
attribute. If you change this value, errors will be reported when you try to retrieve
data from the data type.

Specifying a data item filter:

The data item filter specifies which rows in the underlying database table can be
accessed as data items in the data type.

This filter is an optional setting. The syntax for the data item filter is the same as
the contents of the WHERE clause in the SQL SELECT statement that is supported by
the underlying database.

28 Netcool/Impact: Solutions Guide

For example, if you want to specify that only rows where the Location field is New
York are accessible through this data type, you can use the following data item
filter:
Location = ’New York’

If you want to specify that only rows where the Location is either New York or New
Jersey, you can use the following expression:
Location = ’New York’ OR Location = ’New Jersey’

Make sure that you enclose any strings in single quotation marks.

To specify the data item filter, type the filter string in the Filter text box in the
Data Item Filter and Ordering area of the data type editor.

Specifying data item ordering:

Data item ordering defines the order in which data items are retrieved from the
data type.

The order settings are used both when you retrieve data items using the
GetByFilter function in a policy and when you browse data items using the GUI.
You can order data items in ascending or descending alphanumeric order by any
data type field. Data item ordering is an optional part of the data type
configuration.

You specify data item ordering in the data type configuration as a
comma-separated list of fields, where each field is accompanied with the ASC or
DESC keyword.

For example, to retrieve data items in ascending order by the Name field, you use
the following ordering string:
Name ASC

To retrieve data items in descending order first by the Location field and then in
ascending order by Name, you use the following string:
Location DESC,Name ASC

To specify data item ordering:
1. In the Data Type Editor, scroll down so that the Data Filtering and Ordering

area is visible.
2. Type the data item ordering string in the Order By field.

LDAP data types
An LDAP data type represents a set of entities in an LDAP directory tree.

The LDAP DSA determines which entities are part of this set in real time by
dynamically searching the LDAP tree for those that match a specified LDAP filter
within a certain scope. The DSA performs this search in relation to a location in the
tree known as the base context.

The LDAP Data Type editor contains three tabs.

Chapter 2. Working with data models 29

Table 12. LDAP Data Type editor tabs

Tab Description

LDAP Info In this tab, you configure the attributes of the data type. For more
information about these attributes, see “LDAP Info tab of the LDAP data
type configuration window.”

Dynamic
Links

In this tab you can create links to other data types, both external and
internal, to establish connections between information. Links between
individual data items can represent any relationship between the items that
policies need to be able to look up. For example, a node linked to an
operator allows a policy to look up the operator responsible for the node.

For more information about creating links to other data types, see “Working
with links” on page 6.

Cache
Settings

In this tab, you can set up caching parameters to regulate the flow of data
between Netcool/Impact and the external data source.

For more information about, cache settings see “SQL data type
configuration window - Cache settings tab” on page 27.

Important: You must create one LDAP data type for each set of entities that you
want to access. The LDAP data type is a read-only data type which means that
you cannot edit or delete LDAP data items from within the GUI.

Configuring LDAP data types:

Use this procedure to configure an LDAP data type.

Procedure

v Provide a unique name for the data type.
v Specify the name of the underlying data source for the data type.
v Specify the base context level in the LDAP hierarchy where the elements you

want to access are located.
v Specify a display name field.
v Optional: Specify a restriction filter.

LDAP Info tab of the LDAP data type configuration window:

Use this information to configure LDAP information for a LDAP data type.

Table 13. General settings in the LDAP Info Tab on the LDAP Data Type editor

Editor element Description

Data Type Name Type a unique name to identify the data
type. Only letters, numbers, and the
underscore character must be used in the
data type name. If you use UTF-8 characters,
make sure that the locale on the Impact
Server where the data type is saved is set to
the UTF-8 character encoding.

State: Enabled Leave checked to enable the data type so
that it can be used in policies.

30 Netcool/Impact: Solutions Guide

Table 14. LDAP settings in the LDAP Info Tab on the LDAP Data Type editor

Editor element Description

Data Source Name Type the name of the underlying data
source.

This field is automatically populated, based
on your data source selection in the Data
Types task pane of the Navigation panel.
However, if you have more than one LDAP
data source configured for use with
Netcool/Impact, you can select any LDAP
data source in the list, if necessary.

If you enter a new name, the system
displays a message window that asks you to
confirm your change.

Search scope Select the search scope:

v OBJECT_SCOPE

v ONLEVEL_SCOPE

v SUBTREE_SCOPE

Base Context Type the base context that you want to use
when you search for LDAP entities. For
example:ou=people, o=companyname.com.

Key Search Field Type the name of a key field, for example,
dn.

Display Name Field You can use this field to select a field from
the menu to label data items according to
the field value. Choose a field that contains
a unique value that can be used to identify
the data item for example, ID. To view the
values on the data item you need to go to
View Data Items for the data type and
select the Links icon. Click the data item to
display the details.

Restriction Filter: Optionally, type a restriction filter. The
restriction filter is an LDAP search filter as
defined in Internet RFC 2254. This filter
consists of one or more Boolean expressions,
with logical operators prefixed to the
expression list. For more information, see the
LDAP Filter information in the Policy
Reference Guide.

Table 15. Attribute configuration in the LDAP Info Tab on the LDAP Data Type editor

Editor element Description

New Field For each field that you want to add to the
data type, click New.

Mediator DSA data types
Mediator DSA data types are typically created using scripts or other tools provided
by the corresponding DSA.

Chapter 2. Working with data models 31

Usually the data types, and their associated data sources are installed when you
install the Mediator DSA (CORBA or Direct), so you do not have to create them.
The installed data types are available for viewing and, if necessary, for editing.

For more information about the Mediator data types used with a particular DSA,
see the DSA documentation.

Data type caching
You can use data type caching to reduce the total number of queries that are made
against a data source for performance or other reasons.

Caching helps you to decrease the load on the external databases used by
Netcool/Impact. Data caching also increases system performance by allowing you
to temporarily store data items that have been retrieved from a data source.

Important: Caching works best for static data sources and for data sources where
the data does not change often.

Caching works when data is retrieved during the processing of a policy. When you
view data items in the GUI, cached data is retrieved rather than data directly from
the data source.

You can specify caching for external data types to control the number of data items
temporarily stored while policies are processing data. Many data items in the cache
uses significant memory but can save bandwidth and time if the same data is
referenced frequently.

Important: Data type caching works with SQL database and LDAP data types.
Internal data types do not require data type caching.

You configure caching on a per data type basis within the GUI. If you do not
specify caching for the data type, each data item is reloaded from the external data
source every time it is accessed.

Configuring data caching
Use this procedure to configure data caching.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the data type you want to edit.
3. Double click the data type or click the Edit icon on the toolbar to open the

Cache Settings tab.
4. Select the Enable Data Caching check box.
5. Enter a number in the Maximum Number of Data Items field to set the

maximum number of data items to cache.
6. Enter the amount of time to cache each data item in the Invalidate Cached

Items After fields to set the expiration time for data items in the cache.
Netcool/Impact calculates the expiration time separately for each data item in
the cache.

7. Click Save to implement the changes to the data type.

Important: In order for data caching to work, the KeyFields in the data type
must be unique.

32 Netcool/Impact: Solutions Guide

Configuring query caching
Use this procedure to configure query caching.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the data type you want to edit.
3. Double click the data type or click the Edit icon on the toolbar to open the

Cache Settings tab.
4. Scroll down until the Enable Query Caching area is visible.
5. Select the Enable Query Caching check box.
6. Enter a number in the Maximum Number of Data Items field to set the

maximum number of queries to cache.
7. Enter the amount of time to cache each data item in theInvalidate Cached

Items After fields to set the expiration time for query results in the cache.
The expiration time is calculated separately for each query in the cache.

8. Click Save to implement the changes to the data type.

Important: You must also enable data caching for query caching to work.

Count caching
Use this procedure to configure count caching.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the data type you want to edit.
3. Double click the data type or click the Edit icon on the toolbar to open the

Cache Settings tab.
4. Scroll down until the Enable Count Caching area is visible.
5. Select the Enable Count Caching check box.
6. Enter the amount of time to cache each data item in theInvalidate Cached

Items After fields.
You can configure the expiration time for items counted using this feature.

7. Click Save to implement the changes to the data type.

Working with links
You set up links after you have created the data types required by your solution
and after you have populated any internal data types in the model with
information.

When you write policies, you use the GetByLinks function to traverse the links and
retrieve data items that are linked to other data items.

Links overview
Links are an element of the data model that defines relationships between data
items and between data types.

They can save time during the development of policies because you can define a
data relationship once and then reuse it several times when you need to find data

Chapter 2. Working with data models 33

related to other data in a policy. Links are an optional part of a data model.
Dynamic links and static links are supported.

Link categories
Netcool/Impact provides two categories of links.

Static links
Static links define a relationship between data items in internal data types.

Dynamic links
Dynamic links define a relationship between data types.

Static links
Static links define a relationship between data items in internal data types.

Static links are supported for internal data types only. Static links are not
supported for other categories of data types, such as SQL database and LDAP
types, because the persistence of data items that are stored externally cannot be
ensured.

A static link is manually created between two data items when relationships do not
exist at the database level.

With static links, the relationship between data items is static and never changes
after they have been created. You can traverse static links in a policy or in the user
interface when you browse the linked data items. Static links are bi-directional.

Dynamic links
Dynamic links define a relationship between data types.

This relationship is specified when you create the link and is evaluated in real time
when a call to the GetByLinks function is encountered in a policy. Dynamic links
are supported for internal, SQL database and LDAP data types.

The relationships between data types are resolved dynamically at run time when
you traverse the link in a policy or when you browse links between data items.
They are dynamically created and maintained from the data in the database.

The links concept is similar to the JOIN function in an SQL database. For example,
there might be a 'Table 1' containing customer information (name, phone number,
address, and so on) with a unique Customer ID key. There may also be a 'Table 2'
containing a list of servers. In this table, the Customer ID of the customer that
owns the server is included. When these data items are kept in different databases,
Netcool/Impact enables the creation of a link between Table 1 and Table 2 through
the Customer ID field, so that you can see all the servers owned by a particular
customer.

You can use dynamic links only at the database level. (When relationships do not
exist at the database level, you needs to create static links.) You can create dynamic
links for all types of data types (internal, external, and predefined). See
“Configuring data types” on page 5 for information about the kinds of data type.

Dynamic links are unidirectional links, configured from the source to the target
data type.

34 Netcool/Impact: Solutions Guide

Link by filter
A link by filter is a type of dynamic link where the relationship between two data
types is specified using the link filter syntax. The link filter syntax is as follows:
target_field = %source_field% [AND (target_field = %source_field%) ...]

Where target_field is the name of a field in the target data type and
source_field is the name of the field in the source data type. When you call the
GetByLinks function in a policy, Netcool/Impact evaluates the data items in the
target data type and returns those items whose target_field value is equal to the
specified source_field.

If the value of source_field is a string, you must enclose it in single quotation
marks.

The following examples show valid link filters:
Location = ’%Name%’
(NodeID = %ID%) AND (Location = ’%Name%’)

Link by key
A link by key is a type of dynamic link where the relationship between two data
types is specified by a foreign key expression.

The foreign key expression is the value that the key field in data items in the target
data type must have in order to be considered linked to the source. The syntax of
the foreign key expression is the name or names of fields in the source data type
whose value must equal the key field in the target. You can concatenate fields
using the addition (+) operator.

When you call the GetByLinks function in a policy, Netcool/Impact evaluates the
data items in the target data type and returns those data items whose key field
values match the specified key expression.

The following examples show valid key expressions:
LastName
FirstName + " " + LastName
LastName + ", " + FirstName

Link by policy
A link by policy is a type of dynamic link where the relationship between two data
types is specified by a policy.

The policy contains the logic that is used to retrieve data items from the target data
type. The linking policy specifies which data items to return by setting the value of
the DataItems variable.

Setting up static links
Use this procedure to set up a static link.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the internal data type you want to link.
3. Double click the data type or click the Edit icon on the toolbar to open the

source data item you want to link.

Chapter 2. Working with data models 35

A Data Type Editor tab opens in the Main Work panel.
4. Click the Links button for the data item you want to link.
5. In the Static Links window that opens, select the data type that contains the

data items you want to link to.
6. Select the data item to link to from the list of data items that appears.

Setting up dynamic links
You can set up a dynamic link by filter, by key, and by policy.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation, and

click Data Model to open the Data Model tab.
2. Expand the Data Source that contains the internal data type you want to link.
3. Double click the data type or click the Edit icon on the toolbar to open the data

type you want to use as the source for the link.
4. In the Data Type Editor tab, select the Dynamic Links tab in the Data Type

Editor.
5. Depending on the type of link you want to create, click New Link By Filter,

New Link By Key, or Link By Policy button.
This will bring up a new link editor window.

Tip: To create a new link by policy, you may need to scroll down so that the
Link By Policy area is visible.

6. Select the target data type from the Target Data Types list.
7. Select the exposed link type from the Exposed Link Type list.
8. Depending on the type of link you are creating, type in the filter, key

expression, or select a policy.
v For a link by filter, type the filter syntax for the link in the Filter into Target

Data Type field. For example: Location = ’%Facility%’.
v For a link by key, type the key expression in the Foreign Key Expression

field. For example: FirstName + ’ ’ + LastName.
v For a link by policy, select the linking policy from the Policy To Execute to

Find Links list.
9. Click OK.

Working with event sources
When you design your solution, you must create one event source for each
application that you want to monitor for events, then you can create event reader
services and associate them with the event source.

Typically, a solution uses a single event source. This event source is most often an
ObjectServer database.

Event sources overview
An event source is a special type of data source that represents an application that
stores and manages events, the most common such application being the
ObjectServer database.

36 Netcool/Impact: Solutions Guide

An event is a set of data that represents a status or an activity on a network. The
structure and content of an event varies depending on the device, system, or
application that generated the event but in most cases, events are
Netcool/OMNIbus alerts.

The installer automatically creates a default ObjectServer event source,
defaultobjectserver. This event source is configured using information you provide
during the installation. You can also use other applications as non-ObjectServer
event sources.

After you have set an event source, you do not need to actively manage it unless
you change the solution design but, if necessary, you can use the GUI to modify or
delete event sources.

ObjectServer event sources
The most common event source are ObjectServer event sources that represent
instances of the Netcool/OMNIbus ObjectServer database.

ObjectServer events are alerts stored in the alerts.status table of the database.
These alerts have a predefined set of alert fields that can be supplemented by
additional fields that you define.

ObjectServer event sources are monitored using an OMNIbus event reader service.
The event reader service queries the ObjectServer at intervals and retrieves any
new, updated, or deleted events that matches its predefined filter conditions. The
event reader then passes each event to the policy engine for processing.

Non-ObjectServer event sources
Non-ObjectServer event sources represent instances of other applications, such as
external databases or messaging systems, that provide events to Netcool/Impact.

Non-ObjectServer events can take a wide variety of forms, depending on the
nature of the event source. For SQL database event sources, an event might be the
contents of a row in a table. For a messaging system event source, an event might
be the contents of a message.

Non-ObjectServer event sources are monitored using an event listener service. The
event listener service passively receives events from the event source and then
passes them to the policy engine for processing.

The DatabaseEventReader service monitors Non-ObjectServer data sources. The
Database Event Reader service queries the SQL data source at intervals and
retrieves any new or updated events that match its predefined filter conditions.
The Database Event Reader passes each event to the policy engine for processing.

Event source architecture
This diagram shows how event sources interact with event sources and event
listeners with their underlying event management applications.

Chapter 2. Working with data models 37

Setting up ObjectServer event sources
Use this procedure to set up an ObjectServer event source.

Procedure
v Get the connection information for the ObjectServer.

This information is the host name or IP address of the ObjectServer host system
and the port number. The default port number for the ObjectServer is 4100.

v Create and configure the event source.

Figure 3. Event source architecture

38 Netcool/Impact: Solutions Guide

For more information, see “Configuring the default ObjectServer data source” in the
Administration Guide.

v After you create the event source, you can then create and configure an
associated event reader service.
For more information about creating and configuring an event reader service,
see the User Interface Guide.

Chapter 2. Working with data models 39

40 Netcool/Impact: Solutions Guide

Chapter 3. Working with services

You work with services by configuring predefined services, and creating and
configure user-defined services.

Services overview
Services perform much of the functionality associated with the Impact Server,
including monitoring event sources, sending and receiving e-mail, and triggering
policies.

The most important service is the OMNIbus event reader, which you can use to
monitor an ObjectServer for new, updated or deleted events. The event processor,
which processes the events retrieved from the readers and listeners is also
important to the function of Netcool/Impact.

Internal services control the application's standard processes, and coordinate the
performed tasks, for example:
v Receiving events from the ObjectServer and other external databases
v Executing policies
v Responding to and prioritizing alerts
v Sending and receiving e-mail and instant messages
v Handling errors

Some internal services have defaults, that you can enable rather than configure
your own services, or in addition to creating your own. For some of the basic
internal services, it is only necessary to specify whether to write the service log to
a file. For other services, you need to add information such as the port, host, and
startup data.

User defined services are services that you can create for use with a specific policy.

Generally, you set up services once, when you first design your solution. After
that, you do not need to actively manage the services unless you change the
solution design.

To set up services, you must first determine what service functionality you need to
use in your solution. Then, you create and configure the required services using
the GUI. After you have set up the services, you can start and stop them, and
manage the service logs.

Predefined services
Predefined services are services that are created automatically when you install
Netcool/Impact. You can configure predefined services, but you cannot create new
instances of the predefined services and you cannot delete existing ones.

These services are predefined:
v Event processor
v E-mail sender
v Hibernating policy activator

© Copyright IBM Corp. 2006, 2016 41

v Policy logger
v Command-line manager

User-defined services
User-defined services are services that you can create, modify, and delete. You can
also use the default instance of these services that are created at installation.

You can create user-defined services by using the defaults that are stored in the
global repository or select them from a list in the services task pane in the
navigation panel. All user-defined services are also listed in the services panel
where you can start them and stop them, just as you do the internal services. You
can add these services to a project as project members.

These services are user-defined:
v Event readers
v Event listeners
v E-mail readers
v Policy activators

Database event reader service
The database event reader service is a service that polls supported, external SQL
data sources at regular intervals to get business events in real time. The service is
configured via the GUI.

You can add an additional property to the NCI_XXX.props file in order to match the
date and time format of the timestamp field in the external database. Where NCI is
the name of the impact instance and XXX is the name of the database event reader.

An example of this property is:
impact.XXX.formatpattern=dd-MMM-yy hh.mm.ss.SSS aaa

OMNIbus event reader service
OMNIbus event readers are services that monitor a Netcool/OMNIbus
ObjectServer event source for new, updated, and deleted alerts and then runs
policies when the alert information matches filter conditions that you define.

The event reader service uses the host and port information of a specified
ObjectServer data source so that it can connect to an Objectserver to poll for new
and updated events and store them in a queue. The event processor service
requests events from the event reader. When an event reader discovers new,
updated, or deleted alerts in the ObjectServer, it retrieves the alert and sends it to
an event queue. Here, the event waits to be handled by the event processor.

You configure this service by defining a number of restriction filters that match the
incoming events, and passing the matching events to the appropriate policies. The
service can contain multiple restriction filters, each one triggering a different policy
from the same event stream, or it can trigger a single policy.

You can configure an event reader service to chain multiple policies together to be
run sequentially when triggered by an event from the event reader.

42 Netcool/Impact: Solutions Guide

Important: Before you create an OMNIbus event reader service, you must have a
valid ObjectServer data source to which the event reader will connect to poll for
new and updated events.

OMINbus event reader architecture
This diagram shows the relationship between Netcool/Impact, an OMNIbus event
reader, and an ObjectServer.

OMNIbus event reader process
The phases of the OMNIbus event reader process are startup, event polling, event
querying, deleted event notification, and event queueing.

Startup
When the event reader is started it reads events using the StateChange or
serial value that it used before being shut down. To read all the events on
start-up, click Clear State.

Event Polling
During the event polling phase, the OMNIbus event reader queries the
ObjectServer at intervals for all new and unprocessed events. You set the
polling interval when you configure the event reader.

Event Querying
When the OMNIbus event reader queries the ObjectServer, either at
startup, or when polling for events at intervals, it reads the state file,
retrieves new or updated events, and records the state file.. For more
information, see “Event querying” on page 44.

Deleted Event Notification
If the OMNIbus event reader is configured to run a policy when an event
is deleted from the ObjectServer, it listens to the ObjectServer through the
IDUC interface for notification of deleted alerts. The IDUC delete
notification includes the event field data for the deleted alert.

Figure 4. Event reader architecture

Chapter 3. Working with services 43

Event Queueing
After it retrieves new or updated events, or has received events through
delete notification, the OMNIbus event reader compares the field data in
the events to its set of filters. For more information, see “Event queuing.”

Event querying
When the OMNIbus event reader queries the ObjectServer, either at startup, or
when polling for events at intervals, it reads the state file, retrieves new or
updated events, and records the state file.

Reading the state file
The state file is a text file used by the OMNIbus event reader to cache state
information about the last event read from the ObjectServer. The event
reader reads the state file to find the Serial or StateChange value of the
last read event. For more information, see “Reading the state file.”

Retrieving new or updated events
The event reader connects to the ObjectServer and retrieves new or
updated events that have occurred since the last read event. During this
phase, the event reader retrieves all the new or updated events from the
ObjectServer, using information from the state file to specify the correct
subset of events.

Recording the state file
After the event reader retrieves the events from the ObjectServer, it caches
the Serial or StateChange value of the last processed event.

Reading the state file:

The state file is a text file used by the OMNIbus event reader to cache state
information about the last event read from the ObjectServer.

If the event reader is configured to get only new events from the ObjectServer, the
state file contains the Serial value of the last event read from the ObjectServer. If
the event reader is configured to get both new and updated events from the
ObjectServer, the file contains the StateChange value of the last read event.

The event reader reads the contents of the state file whenever it polls the
ObjectServer and passes the Serial or StateChange value as part of the query.

Event queuing
After it retrieves new or updated events, or has received events through delete
notification, the OMNIbus event reader compares the field data in the events to its
set of filters.

If the event matches one or more of its filters, the event reader places the event in
the event queue with a pointer to the corresponding policy. After the events are in
the event queue, they can be picked up by the event processor service. The event
processor passes the events to the corresponding policies to the policy engine for
processing.

OMNIbus event reader configuration
You can configure the following properties of an OMNIbus event reader.
v Event reader name
v ObjectServer event source you want the event reader to monitor
v Interval at which you want the event reader to poll the ObjectServer

44 Netcool/Impact: Solutions Guide

v Event fields you want to retrieve from the ObjectServer
v Event mapping
v Event locking
v Order in which the event reader retrieves events from the ObjectServer
v Start up, service log, and reporting options

OMNIbus event reader service General Settings tab
Use this information to configure the general settings of the OMNIbus event reader
service.

Table 16. EventReader service - general settings tab

Table Element Description

Service name Enter a unique name to identify the service.

Data Source Select an OMNIbusObjectServer data source. The ObjectServer
data source represents the instance of the Netcool/OMNIbus
ObjectServer that you want to monitor using this service. You
can use the default ObjectServer data source that is created
during the installation, defaultobjectserver.

Polling Interval The polling interval is the interval in milliseconds at which the
event reader polls the ObjectServer for new or updated events.

Select or type how often you want the service to poll the events
in the event source. If you leave this field empty, the event
reader polls the ObjectServer every 3 seconds (3000
milliseconds).

Restrict Fields: Fields You can complete this step when you have saved the
OMNIbusEventReader service. You can specify which event
fields you want to retrieve from the ObjectServer. By default, all
fields are retrieved in the alerts. To improve OMNIbus event
reader performance and reduce the performance impact on the
ObjectServer, configure the event reader to retrieve only those
fields that are used in the corresponding policies.

Click the Fields button to access a list of all the fields available
from the selected ObjectServer data source.

You can reduce the size of the query by selecting only the fields
that you need to access in your policy. Click the Optimize List
button to implement the changes. The Optimize List button
becomes enabled only when the OMNIbusEventReader service
has been saved.

Startup: Automatically
when server starts

Select to automatically start the service when the server starts.
You can also start and stop the service from the GUI.

Service log: Write to file Select to write log information to a file.

Collect Reports: Enable Select to enable data collection for the Policy Reports.

Clear State: Clear When you click the Clear State button, the Serial and
StateChange information stored for the event reader is reset to 0.
The event reader retrieves all events in the ObjectServer at
startup and places them in the event queue for processing. If the
event reader is configured to get updated events, it queries the
ObjectServer for all events where StateChange >= 0. Otherwise,
it queries the ObjectServer for events where Serial > 0.

You can use the Clear State button only to clear the event reader
state when the service is stopped. Clicking the button while the
service is running does not change the state of the event reader.

Chapter 3. Working with services 45

Table 16. EventReader service - general settings tab (continued)

Table Element Description

Clear Queue: Clear Click to clear unprocessed events.

OMNIbus event reader service Event Mapping tab
In the Event Mapping tab, you set events to trigger policies when they match a
filter.

Table 17. Event Mapping tab

Window element Description

Test events with all filters Select this option to test events with all
filters and run any matching policies.

If an event matches more than one filter, all
policies that match the filtering criteria are
triggered.

Stop testing after first match Select this option to stop testing after the
first matching policy, and trigger only the
first matching policy.

Table 18. Actions on the Event Mapping tab

Window element Description

Get updated events Select to receive updated events and new
events from the ObjectServer. All new events
are automatically sent. See also the
description of the Order By field for more
information.

If you do not select Get Updates Events,
Netcool/Impact uses Serial instead. You can
configure the OMNIbusEventReader service
to fetch only new events and to work with a
ObjectServer failover/failback pair in the
eventreader.props file.
Important: Adding properties to the
eventreader.props file overrides selecting or
clearing the Get Updates Events check box
in the UI.

v If you plan to use this approach in an
ObjectServer failover scenario, see the
section Managing the OMNIbusEventReader
with an ObjectServer pair for New Events or
Inserts in the Troubleshooting section.

v If you do not select Get Updated Events,
Netcool/Impact uses the Serial field to
query Netcool/OMNIbus. Serial is an auto
increment field in Netcool/OMNIbus and
has a maximum limit before it rolls over
and resets. For information about to set
up Netcool/Impact to handle Serial
rollovers, see the section Handling Serial
rollover in the Troubleshooting section.

Get status events Select to receive the status events that the
Self Monitoring service inserts into the
ObjectServer.

46 Netcool/Impact: Solutions Guide

Table 18. Actions on the Event Mapping tab (continued)

Window element Description

Run policy on deletes Select if you want the event reader to
receive notification when alerts are deleted
from the ObjectServer. Then, select the
policy that you want to run when
notification occurs from the Policy list.

Policy Select a policy to run when events are
cleared from the ObjectServer.

Event Locking: enable Select if you want to use event order locking
and type the locking expression in the
Expression field.

Event locking allows a multi-threaded event
processor to categorize incoming alerts that
are based on the values of specified alert
fields and processes them one at a time.

With event locking enabled, if more than
one event exists with a certain lock value,
then these events are not processed at the
same time. These events are processed in a
specific order in the queue.

When event locking is enabled a value of
true is stored for enableorderevents, in the
property file for the event reader, for
example:

impact.omnibuseventreader.
enableorderevents=true

You use event locking in situations where
you want to prevent a multi-threaded event
processor from attempting to access a single
resource from more than one instance of a
policy that are running simultaneously.

Expression The locking expression consists of one or
more alert field names.

To lock on a single field, specify the field
name, for example:

Node

To lock more than one field, concatenate
them with the + sign, for example:

Node+Severity

If the value of that field is the same in both
events, then one event is locked and the
second thread must wait until the first one is
finished.

The expression is stored in the property file
for the Event Reader as
eventlockingexpression, for example:

impact.omnibuseventreader.
eventlockingexpression=
Node+Severity

Chapter 3. Working with services 47

Table 18. Actions on the Event Mapping tab (continued)

Window element Description

New Mapping Click to add a new filter.

Order by If you want to order incoming events that
are retrieved from the ObjectServer, type the
name of an alert field or a comma-separated
list of fields. The event reader sorts
incoming events in ascending order by the
contents of this field.

This field or list of fields is identical to the
contents of an ORDER BY clause in an SQL
statement. If you specify a single field, the
event reader sorts incoming events by the
specified field value. If you specify multiple
fields, the events are grouped by the
contents of the first field and then sorted
within each group by the contents of the
second field, and so on.

For example, to sort incoming events by the
contents of the Node field, type Node.

To sort events first by the contents of the
Node field and then by the contents of the
Summary field, type Node, Summary.

You can also specify that the sort order is
ascending or descending by using the ASC or
DESC key words.

For example, to sort incoming events by the
contents of the Node field in ascending
order, type the following Node ASC.

Note that all events retrieved from the
ObjectServer are initially sorted by either the
Serial or StateChange field before any
additional sorting operations are performed.
If you select the Get Updates Events option,
see the Actions check box in the Event
Mapping section of the window, the events
are sorted by the StateChange field. If this
option is not specified, incoming events are
sorted by the Serial field.

Analyze Event Mapping Table Click to analyze the filters in the Event
Mapping table.

Mappings
Event mappings allow you to specify which policies you want to be run when
certain events are retrieved.

Each mapping consists of a filter that specifies the type of event and a policy
name. You must specify at least one event mapping for the event reader to work.

The syntax for the filter is the same as the WHERE clause in an SQL SELECT
statement. This clause consists of one or more comparisons that must be true in

48 Netcool/Impact: Solutions Guide

order for the specified policy to be executed. For more information about the SQL
filter syntax, see the Policy Reference Guide.

The following examples show event mapping filters.
AlertKey = ’Node not responding’
AlertKey = ’Node not reachable by network ping’ AND Node = ’ORA_Host_01’

Event matching
You can specify whether to run only the first matching policy in the event
mappings or to run every policy that matches.

If you choose to run every policy that matches, the OMNIbus event reader will
place a duplicate of the event in the event queue for every matching policy. The
event will be processed as many times as their are matching filters in the event
reader.

Actions
By default, the event broker monitors the ObjectServer for new alerts, but you can
also configure it to monitor for updated alerts and to be notified when an alert is
deleted.

In addition, you can configure it to get all the unprocessed alerts from the
ObjectServer at startup.

Event locking
Event locking allows a multithreaded event broker to categorize incoming alerts
based on the values of specified alert fields and then to process them within a
category one at a time in the order that they were sent to the ObjectServer.

Event locking locks the order in which the event broker processes alerts within
each category.

Remember: When event locking is enabled in the reader, the events read by it are
only processed in the primary server of the cluster.

You use event locking in situations where you want to preserve the order in which
incoming alerts are processed, or in situations where you want to prevent a
multithreaded event processor from attempting to access a single resource from
more than one instance of a policy running simultaneously.

You specify the way the event reader categorizes incoming alerts using an
expression called a locking expression. The locking expression consists of one or
more alert field names concatenated with a plus sign (+) as follows:
field[+field...]

Where field is the name of an alert field in the alerts.status table of the
ObjectServer.

When an event reader retrieves alerts from the ObjectServer, it evaluates the
locking expression for each incoming alert and categorizes it according to the
contents of the alert fields in the expression.

For example, when using the locking expression Node, the event broker categorizes
all incoming alerts based on the value of the Node alert field and then processes
them within a category one at a time in the order that they were sent to the
ObjectServer.

Chapter 3. Working with services 49

In the following example:
Node+AlertKey

The event broker categorizes all incoming alerts based on the concatenated values
of the Node and AlertKey fields. In this example, an alert whose Node value is Node1
and AlertKey value is 123456 is categorized separately

Event order
The reader first sorts based on StateChange or Serial value depending on whether
Get Updates is used or not.

Each event has a unique Serial so the Order by field is ignored. In instances where
there is more than one event with the same StateChange, the reader uses the Order
By field to sort events after they are sorted in ascending order of StateChange.

Database event listener service
The database event listener service monitors an Oracle event source for new,
updated, and deleted events.

This service works only with Oracle databases. When the service receives the data,
it evaluates the event against filters and policies specified for the service and sends
the event to the matching policies. The service listens asynchronously for events
generated by an Oracle database server and then runs one or more policies in
response.

You configure the service using the GUI. Use the configuration properties to
specify one or more policies that are to be run when the listener receives incoming
events from the database server.

Setting up the database server
Before you can use the database event listener, you must configure the database
client and install it into the Oracle database server.

About this task

The database client is the component that sends events from the database server to
Netcool/Impact. It consists of a set of Oracle Java schema objects and related
properties files. When you install the Impact Server, the installer copies a tar file
containing the client program files to the local system.

Perform these steps to set up the database server:

Procedure
1. Copy the client tar file to the system where Oracle is running and extract its

contents.
a. Copy the client tar file, $IMPACT_HOME/install/agents/oracleclient.tar,

from Netcool/Impact into a temporary directory on the system where
Oracle is running.

b. Extract the tar contents using the UNIX tar command or a Windows archive
utility, for example WinZip.

2. Edit the nameserver properties file on the database client side.

50 Netcool/Impact: Solutions Guide

The client tar file contains the nameserver.props file that the database client
uses to determine the NameServer connection details. For information about
configuring this file, see “Editing the nameserver.props file for the database
client.”

3. Optional: Edit the listener properties file.
The client tar file contains the impactdblistener.props with additional settings
for the database client. For information about configuring this file, see “Editing
the listener properties file” on page 52.

4. Install the client files into the database server using the Oracle loadjava utility.
Oracle provides the $ORACLE_HOME/bin/loadjava utility that you can use to
install the client files into the database server. For information about installing
the client files into the database server, see “Installing the client files into
Oracle” on page 52.

5. Grant database permissions.
You must grant a certain set of permissions in the Oracle database server in
order for the database event listener to function.. For more information about
granting database permissions, see “Granting database permissions” on page
53.

Editing the nameserver.props file for the database client
The client tar file contains the nameserver.props file that the database client uses to
determine the NameServer connection details.

The database client uses the name server to find and connect to the primary
instance of the Impact Server.

Restriction: In clustering configurations of Netcool/Impact, the database event
listener only runs in the primary server.

The following example shows a sample of the nameserver.props file that the
database client can use to connect to a single-server configuration of the
NameServer.
nameserver.0.host=NCI1
nameserver.0.port=9080
nameserver.0.location=/nameserver/services

nameserver.userid=tipadmin
nameserver.password=tippass

nameserver.count=1

In this example, the NameServer is located on the NCI1 Impact Server, and is
running on the default port, 9080. The NameServer user and password have
default values, tipadmin, and tippass.

The following example shows a sample of the nameserver.props file that the
database client can use to connect to a cluster that consists of two NameServer
instances.
nameserver.0.host=NCI1
nameserver.0.port=9080
nameserver.0.location=/nameserver/services

nameserver.1.host=NCI2
nameserver.1.port=9080
nameserver.1.location=/nameserver/services

Chapter 3. Working with services 51

nameserver.userid=tipadmin
nameserver.password=tippass

nameserver.count=2

In this example, the NameServers are located on systems named NCI1, and NCI2
Impact Servers, and are running on the default port, 9080.

Editing the listener properties file
The client tar file contains the impactdblistener.props with additional settings for
the database client.

Edit this file so that it contains the correct name for the Impact Server cluster. You
can also change debug and delimiter properties.

Table 19 shows the properties in the listener properties file:

Table 19. Database client listener properties file

Property Description

impact.cluster.name Name of the Impact Server cluster where the
database event listener is running. The
default value for this property is NCICLUSTER.

impact.dblistener.debug Specifies whether to run the database client
in debug mode. The default value for this
property is true.

impact.dblistener.delim Specifies the delimiter character that
separates name/value pairs in the VARRAY
sent by Java stored procedures to the
database client. The default value for this
property is the pipe character (|). You
cannot use the colon (:) as a delimiter.

Installing the client files into Oracle
Oracle provides the $ORACLE_HOME/bin/loadjava utility that you can use to install
the client files into the database server.

Before you begin

If you are migrating to Netcool/Impact 6.1.1, remove any preexisting Java archive
(JAR) and properties files. To remove the preexisting files, use the following
command:
dropjava -user username/password <file>

username, and password is a valid user name and password for a user whose
schema contains the database resources where the Java stored procedures are run.

Procedure
1. Navigate to the ORACLE_HOME/bin directory.
2. Install the client jar, and properties files.

a. Use the following command to install the nameserver.jar file:
loadjava -user username/password -resolve nameserver.jar

b. Use the following command to install the impactdblistener.jar file:
loadjava -user username/password -resolve impactdblistener.jar

c. Use the following command to install the nameserver.props file:

52 Netcool/Impact: Solutions Guide

loadjava -user username/password -resolve nameserver.props

d. Use the following command to install the impactdblistener.props file:
loadjava -user username/password -resolve impactdblistener.props

Important: You must follow this order of installation, otherwise loadjava
cannot resolve external references between files, and report errors during
installation.

Granting database permissions
You must grant a certain set of permissions in the Oracle database server in order
for the database event listener to function.

Procedure
1. Grant the permissions by entering the following commands at an Oracle

command prompt:
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.net.SocketPermission’,
’hostname:port’,’connect,resolve’)

/
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.net.SocketPermission’,
’hostname:listener_port’,’connect,resolve’)

/
exec dbms_java.grant_permission(’SCHEMA’, ’SYS:java.lang.RuntimePermission’,
’shutdownHooks’ , ’’);

/
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.util.logging.LoggingPermission’
,’control’, ’’);
/
exec dbms_java.grant_permission(’SCHEMA’, ’SYS:java.util.PropertyPermission’,
’*’, ’read, write’)

/
exec dbms_java.grant_permission(’SCHEMA’, ’SYS:java.lang.RuntimePermission’,
’getClassLoader’, ’’)

/
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.net.SocketPermission’,
’hostname:40000’,’connect,resolve’);

SCHEMA is the name of your database schema; hostname is the name of the
host where you are running the Impact Server; port is the HTTP port on the
server; and listener_port is the port used by the database event listener.

2. Optional: You may need to grant socket permissions to additional ports for
Oracle.
For example, the next two port numbers in the allocation sequence for use in
connecting to the database event listener service. You can adjust the
communication port on the Impact Server so that the Oracle client can grant
permissions to connect to the Impact Server on that port using the
impact.server.rmiport property. For example:
IMPACT_HOME/etc/<servername>_server.props impact.server.rmiport=50000

Grant the permission to connect to this port in your Oracle database (port
50000 in the example), otherwise the Impact Server starts at a random port. You
have to grant permissions for a different port each time the Impact Server is
restarted.

Database event listener service configuration window
You configure the database event listener service by setting events to trigger
policies when they match a filter.

Chapter 3. Working with services 53

Table 20. Event mapping settings for database event listener service configuration window

Window element Description

Test events with all filters Click this icon if, when an event matches
more than one filter, you want to trigger all
policies that match the filtering criteria.

Stop testing after first match Click this icon if you want to trigger only
the first matching policy.

You can choose to test events with all filters
and run any matching policies or to stop
testing after the first matching policy.

New Mapping: New Click this icon to create an event filter.

Analyze Event Mapping Table Click this icon to view any conflicts with
filter mappings that you set for this service.

Startup: Automatically when server starts Select to automatically start the service when
the server starts. You can also start and stop
the service from the GUI.

Service log: Write to file Select to write log information to a file.

Sending database events
Perform these tasks to configure the database to send events.
v Create a call spec that publishes the sendEvent() function from the database

client library.
v Create triggers that call the resulting stored procedure.

Before you create these objects in the database, you must understand what kind of
database events you want to send and what conditions will cause them to be sent.
For example, if you want to send an event to Netcool/Impact every time a row is
inserted into a table, you must know the identity of the table, the subset of row
information to send as part of the event and the name of the condition (for
example, after insert) that triggers the operation.

For more information about Java stored procedures, call specs, and triggers, see the
Oracle Java Stored Procedure Developer's Guide.

Creating the call spec
The database client exposes a function named sendEvent() that allows Oracle
schema objects (in this case, triggers) to send events to Netcool/Impact.

The sendEvent() function is located in the class
com.micromuse.response.service.listener.database. DatabaseListenerClient,
which you compiled and loaded when you installed the client into the database
server.

The function has the following syntax:
sendEvent(java.sql.Array x)

Where each element in array x is a string that contains a name/value pair in the
event.

In order for Oracle objects to call this function, you must create a call spec that
publishes it to the database as a stored procedure. The following example shows a
call spec that publishes sendEvent() as a procedure named test_varray_proc:

54 Netcool/Impact: Solutions Guide

CREATE OR REPLACE PROCEDURE test_varray_proc(v_array_inp db_varray_type)
AS LANGUAGE JAVA
NAME
’com.micromuse.response.service.listener.database.DatabaseListenerClient.
sendEvent(java.sql.Array)’;

/

In this example, db_varray_type is a user-defined VARRAY that can be described
using the following statement:
CREATE TYPE db_varray_type AS VARRAY(30) OF VARCHAR2(100);

This call spec and VARRAY type are used in examples elsewhere in this chapter.

When you call the procedure published with this call spec, you pass it an Oracle
VARRAY in which each element is a string that contains a name/value pair in the
event. The name and value in the string are separated using the pipe character (|)
or another character as specified when you configured the database client.

Creating triggers
You can create triggers for DML events, DDL events, system events, and user
events.

DML events triggers:

DML events are sent to Netcool/Impact when the database performs operations
that change rows in a table.

These include the standard SQL INSERT, UPDATE, and DELETE commands.

You configure the database to send DML events by creating triggers that are
associated with these operations. Most often, these triggers take field data from the
rows under current change and pass it to the database client using the call spec
you previously created. In this way, the database reports the inserts, updates, and
deletes to Netcool/Impact for processing as events.

When the database client receives the field data from the trigger, it performs a
SELECT operation on the table to determine the underlying data type of each field.
Because the corresponding row is currently under change, Oracle is likely to report
a mutating table error (ORA-04091) when the database client performs the SELECT.

To avoid receiving this error, your DML triggers must create a copy of the row
data first and then use this copy when sending the event.

The following example contains table type declarations, variable declarations, and
trigger definitions that create a temporary copy of row data. You can modify this
example for your own use. This example uses the type db_varray_type described
in the previous section. The triggers in the example run in response to changes
made to a table named dept.

This example contains:
v Type declaration for deptTable, which is a nested table of db_varray_type.
v Variable declaration for dept1, which is a table of type deptTable. This table

stores the copy of the row data.
v Variable declaration for emptyDept, which is a second table of type deptTable.

This table is empty and is used to reset dept1.
v Trigger definition for dept_reset, which is used to reset dept1.

Chapter 3. Working with services 55

v Trigger definition for dept_after_row, which populates dept1 with field data
from the changed rows.

v Trigger definition for dept_after_stmt, which loops through the copied rows
and sends the field data to the database client using the call spec defined in the
previous section.

The trigger definition for dept_after_row is intentionally left incomplete in this
example, because it varies depending on whether you are handling INSERT, UPDATE
or DELETE operations.

This is an example definition for this trigger:
CREATE OR REPLACE PACKAGE dept_pkg AS

/* deptTable is a nested table of VARRAYs that will be sent */
/* to the database client */
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

/* dept1 will store the actual VARRAYs
dept1 deptTable;

/* emptyDept is used for initializing dept1 */
emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

/* Initialize dept1 */
dept_pkg.dept1 := dept_pkg.emptyDept;
end;
/

/* CREATE OR REPLACE TRIGGER dept_after_row
/* AFTER INSERT OR UPDATE OR DELETE ON dept
/* FOR EACH ROW
/* BEGIN

/* This trigger intentionally left incomplete. */
/* See examples in following sections of this chapter. */

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

/* Loop through rows in dept1 and send field data to database client */
/* using call proc defined in previous section of this chapter */

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

56 Netcool/Impact: Solutions Guide

Insert events triggers:

To send an event to Netcool/Impact when Oracle performs an INSERT operation,
you must first create a trigger that copies the inserted row data to a temporary
table.

You then use another trigger as shown in the example to loop through the
temporary table and send the row data to the database client for processing.

A typical insert trigger contains a statement that populates a VARRAY with the
wanted field data and then assigns the VARRAY as a row in the temporary table.
Each element in the VARRAY must contain a character-delimited set of
name/value pairs that the database client converts to event format before sending
it to Netcool/Impact. The default delimiter character is the pipe symbol (|).

The VARRAY must contain an element for a field named EVENTSOURCE. This field is
used by the database client to determine the table where the database event
originated.

The following example shows a typical VARRAY for insert events:
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’,
’DEPTNO | ’||:NEW.DEPTNO, ’LOC | ’||:NEW.LOC,
’DNAME | ’||:NEW.DNAME, ’IMPACTED | ’||:NEW.IMPACTED);

In this example, the VARRAY contains an EVENTSOURCE field and fields that contain
values derived from the inserted row, as contained in the NEW pseudo-record
passed to the trigger. The value of the EVENTSOURCE field in this example is the dept
table in the Oracle SCOTT schema.

The following example shows a complete trigger that copies new row data to the
temporary table dept1 in package dept_pkg.
CREATE OR REPLACE TRIGGER dept_after_row
AFTER INSERT ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:NEW.DEPTNO,
’LOC | ’||:NEW.LOC, ’DNAME | ’||:NEW.DNAME,
’IMPACTED | ’||:NEW.IMPACTED);

end;
/

For a complete example that shows how to send an insert event, see “Insert event
trigger example” on page 60.

Update and delete events triggers:

You can send update and delete events using the same technique you use to send
insert events.

When you send update and delete events, however, you must obtain the row
values using the OLD pseudo-record instead of NEW.

The following example shows a trigger that copies updated row data to the
temporary table dept1 in package dept_pkg.

Chapter 3. Working with services 57

CREATE OR REPLACE TRIGGER dept_after_row
AFTER UPDATE ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’,
’DEPTNO | ’||:OLD.DEPTNO, ’LOC | ’||:OLD.LOC,
’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

The following example shows a trigger that copies deleted row data to the
temporary table dept1.
CREATE OR REPLACE TRIGGER dept_after_row
AFTER DELETE ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’,
’DEPTNO | ’||:OLD.DEPTNO, ’LOC | ’||:OLD.LOC,
’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

DDL events triggers:

DDL events are sent to Netcool/Impact when the database performs an action that
changes a schema object.

These actions include the SQL CREATE, ALTER, and DROP commands.

To send DDL events, you create a trigger that populates a VARRAY with data that
describes the DDL action and the database object that is changed by the operation.
Then, you pass the VARRAY element to the database client for processing. As with
DML events, the VARRAY contains a character-delimited set of name/value pairs
that the database client converts to event format before sending to Netcool/Impact.

DDL events require two VARRAY elements: EVENTSOURCE, as described in the
previous section, and TRIGGEREVENT. Typically, you populate the TRIGGEREVENT
element with the current value of Sys.sysevent.

The following example shows a typical VARRAY for DDL events.
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);

The following example shows a complete trigger that sends an event to
Netcool/Impact before Oracle executes a CREATE command.
CREATE OR REPLACE TRIGGER ddl_before_create
BEFORE CREATE
ON SCOTT.schema

DECLARE
my_before_create_varray db_varray_type;

BEGIN

58 Netcool/Impact: Solutions Guide

my_before_create_varray :=
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name,
’USERNAME | ’||Sys.login_user,’INSTANCENUM | ’||Sys.instancenum,
’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_create_varray);

end;
/

System events triggers:

System events are sent to Netcool/Impact when the Oracle server starts up, shuts
down or reports a system level error.

System events only work if the user who owns the corresponding triggers has
SYSDBA privileges (for example, the SYS user).

To send DDL events, you create a trigger that populates a VARRAY with data that
describes the system action. Then, you pass the VARRAY element to the database
client for processing. As with DDL events, system events require the TRIGGEREVENT
element to be populated, typically with the value of Sys.sysevent.

The following example shows a typical VARRAY for system events.
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name,
’ USER_NAME | ’||Sys.login_user,
’ INSTANCE_NUM | ’||Sys.instance_num);

The following example shows a complete trigger that sends an event to
Netcool/Impact at Oracle startup.
CREATE OR REPLACE TRIGGER databasestartuptrigger
AFTER STARTUP
ON database

BEGIN
v_array_inp := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name,
’ USER_NAME | ’||Sys.login_user, ’ INSTANCE_NUM | ’||Sys.instance_num);
test_varray_proc(v_array_inp);

User events triggers:

User events are sent to Netcool/Impact when a user logs in to or out of Oracle.

To send user events, you create a trigger that populates a VARRAY with data that
describes the user action. Then, you pass the VARRAY element to the database client
for processing. As with system events, user events require the TRIGGEREVENT
element to be populated, typically with the value of Sys.sysevent. If you do not
specify a value for the EVENTSOURCE element, the database client uses the name of
the database,

The following example shows a typical VARRAY for user events.
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGIN’);

Chapter 3. Working with services 59

The following example shows a complete trigger that sends an event to
Netcool/Impact at when a user logs in.
CREATE OR REPLACE TRIGGER user_login
AFTER logon
on schema

DECLARE
my_login_varray db_varray_type;

BEGIN
my_login_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGIN’);
test_varray_proc(my_login_varray);

end;
/

Insert event trigger example:

This example shows how to create a set of Oracle triggers that send an insert event
to Netcool/Impact.
CREATE OR REPLACE PACKAGE dept_pkg AS
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

dept1 deptTable;
emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

dept_pkg.dept1 := dept_pkg.emptyDept;

end;
/

CREATE OR REPLACE TRIGGER dept_after_row
AFTER INSERT ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:NEW.DEPTNO,
’LOC | ’||:NEW.LOC, ’DNAME | ’||:NEW.DNAME, ’IMPACTED | ’||:NEW.IMPACTED);

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

60 Netcool/Impact: Solutions Guide

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Update event trigger example:

This example shows how to create a set of Oracle triggers that send an update
event to Netcool/Impact.
CREATE OR REPLACE PACKAGE dept_pkg AS
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

dept1 deptTable;
emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

dept_pkg.dept1 := dept_pkg.emptyDept;

end;
/

CREATE OR REPLACE TRIGGER dept_after_row
AFTER UPDATE ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:OLD.DEPTNO,
’LOC | ’||:OLD.LOC, ’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Delete event trigger example:

This example shows how to create a set of Oracle triggers that send a delete event
to Netcool/Impact.
CREATE OR REPLACE PACKAGE dept_pkg AS
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

dept1 deptTable;

Chapter 3. Working with services 61

emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

dept_pkg.dept1 := dept_pkg.emptyDept;

end;
/

CREATE OR REPLACE TRIGGER dept_after_row
AFTER DELETE ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:OLD.DEPTNO,
’LOC | ’||:OLD.LOC, ’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Before create event trigger example:

This example shows how to create a trigger that sends an event before Oracle
executes a CREATE command.
CREATE OR REPLACE TRIGGER ddl_before_create
BEFORE CREATE
ON SCOTT.schema

DECLARE
my_before_create_varray db_varray_type;

BEGIN
my_before_create_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_create_varray);

end;
/

62 Netcool/Impact: Solutions Guide

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

After create event trigger example:

This example shows how to create a trigger that sends an event after Oracle
executes a CREATE command.
CREATE OR REPLACE TRIGGER ddl_after_create
AFTER CREATE
ON SCOTT.schema

DECLARE
my_after_create_varray db_varray_type;

BEGIN
my_after_create_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_after_create_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Before alter event trigger example:

This example shows how to create a trigger that sends an event before Oracle
executes an ALTER command.
CREATE OR REPLACE TRIGGER ddl_before_alter
BEFORE ALTER
ON SCOTT.schema

DECLARE
my_before_alter_varray db_varray_type;

BEGIN
my_before_alter_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_alter_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

After alter event trigger example:

This example shows how to create a trigger that sends an event after Oracle
executes an ALTER command.

Chapter 3. Working with services 63

CREATE OR REPLACE TRIGGER ddl_after_alter
AFTER ALTER
ON SCOTT.schema

DECLARE
my_after_alter_varray db_varray_type;

BEGIN
my_after_alter_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_after_alter_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Before drop event trigger example:

This example shows how to create a trigger that sends an event before Oracle
executes an DROP command.
CREATE OR REPLACE TRIGGER ddl_before_drop
BEFORE DROP
ON SCOTT.schema

DECLARE
my_before_drop_varray db_varray_type;

BEGIN
my_before_drop_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_drop_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

After drop event trigger example:

This example shows how to create a trigger that sends an event after Oracle
executes an DROP command.
CREATE OR REPLACE TRIGGER ddl_after_drop
AFTER DROP
ON SCOTT.schema

DECLARE
my_after_drop_varray db_varray_type;

BEGIN
my_after_drop_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,

64 Netcool/Impact: Solutions Guide

’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_after_drop_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Server startup event trigger example:

This example shows how to create a trigger that sends an event to Netcool/Impact
at Oracle startup.
CREATE OR REPLACE TRIGGER databasestartuptrigger
AFTER STARTUP
ON database

BEGIN
v_array_inp := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name, ’ USER_NAME | ’||Sys.login_user,
’ INSTANCE_NUM | ’||Sys.instance_num);
test_varray_proc(v_array_inp);

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Server shutdown event trigger example:

This example shows how to create a trigger that sends an event to Netcool/Impact
at Oracle shutdown.
CREATE OR REPLACE TRIGGER databaseshutdowntrigger
BEFORE SHUTDOWN
ON database

DECLARE
v_array_inp db_varray_type;

BEGIN
v_array_inp := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name, ’ USER_NAME | ’||Sys.login_user,
’ INSTANCE_NUM | ’||Sys.instance_num);
test_varray_proc(v_array_inp);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Server error event trigger example:

This example shows how to create a trigger that sends an event to Netcool/Impact
when Oracle encounters a server error.

Chapter 3. Working with services 65

CREATE OR REPLACE TRIGGER server_error_trigger_database
AFTER SERVERERROR
ON database

DECLARE
my_varray db_varray_type;

BEGIN
my_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’INSTANCENUM | ’ ||Sys.instance_num,
’LOGINUSER | ’||Sys.login_user, ’ERRORNUM | ’||Sys.server_error(1));
test_varray_proc(my_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Logon event trigger example:

This example shows how to create a trigger that sends an event to Netcool/Impact
when a user logs in to the database.
CREATE OR REPLACE TRIGGER user_login
AFTER logon
on schema

DECLARE
my_login_varray db_varray_type;

BEGIN
my_login_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGIN’);
test_varray_proc(my_login_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Logoff event trigger example:

This example shows how to create a trigger that sends an event to Netcool/Impact
when a user logs out of the database.
CREATE OR REPLACE TRIGGER user_logoff
BEFORE logoff
on schema

DECLARE
my_logoff_varray db_varray_type;

BEGIN
my_logoff_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGOFF’);

66 Netcool/Impact: Solutions Guide

test_varray_proc(my_logoff_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Writing database event policies
Policies that work with database events can handle incoming events, and return
events to the database.

Handling incoming database events
The database event listener passes incoming events to Netcool/Impact using the
built-in EventContainer variable.

When the database event listener receives an event from the database, it populates
the EventContainer member variables with the values sent by the database trigger
using the Oracle VARRAY. You can access the values of EventContainer using the
@ or dot notations in the same way you access the field values in any other type of
event.

The following example shows how to handle an incoming database event. In this
example, the event was generated using the example trigger described in “Insert
events triggers” on page 57.
// Log incoming event values

Log("Department number: " + @DEPTNO);
Log("Location: " + @LOC);
Log("Database name: " + @DNAME);
Log("Impacted: " + @IMPACTED);

The example prints the field values in the event to the policy log.

Returning events to the database
The database event listener supports the use of the ReturnEvent function in a
policy to update or delete events. To use ReturnEvent in a database event policy,
you must perform the following tasks:

Procedure
v Make sure that the database trigger that sends the event populates a special set

of connection event fields.
v Call the ReturnEvent function in the policy that handles the events.

Populating the connection event fields:

For the policy that handles events to return them to the event source, you must
populate a special set of event fields in the database trigger.

These fields specify connection information for the database server. The database
event listener uses this information to connect to the database when you return an
updated or deleted event.

Table 21 on page 68 shows the event fields that you must populate in the trigger.

Chapter 3. Working with services 67

Table 21. Database trigger connection event fields

Field Description

RETURNEVENT You must set a value of TRUE in this event field.

USERNAME User name to use when connecting to the Oracle database server.

PASSWORD Password to use when connecting to the Oracle database server.

HOST Host name or IP address of the system where Oracle is running.

PORT Connection port for the Oracle database server.

SID Oracle server ID.

KEYFIELD Key field in the database table, or any other field that uniquely
identifies a table row.

When the database client sends the event to Netcool/Impact, it encrypts the
connection information (including the database user name and password) specified
in the event fields. The connection information is then unencrypted when it is
received by Netcool/Impact.

The following example shows a trigger that sends an event to Netcool/Impact
when a new row is inserted into the dept table. In this example, you populate the
connection event fields by specifying elements in the Oracle VARRAY that you
pass to the database.
CREATE OR REPLACE TRIGGER dept_after_row
AFTER INSERT ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:NEW.DEPTNO,
’LOC | ’||:NEW.LOC, ’DNAME | ’||:NEW.DNAME, ’IMPACTED | ’||:NEW.IMPACTED,
’RETURNEVENT | TRUE’, ’USERNAME | ora_user’, ’PASSWORD | ora_passwd’,
’HOST | ora_host’, ’PORT | 4100’, ’SID | ora_01’, ’KEYFIELD | DEPTNO’);

end;
/

Returning events to the database:

You can send updated or deleted events to the database server using the
ReturnEvent function.

ReturnEvent sends the event information to the database event listener, which
assembles an UPDATE or DELETE command using the information. The database
event listener then sends the command to the database server for processing. The
UPDATE or DELETE command updates or deletes the row that corresponds to the
original sent event. For more information about ReturnEvent, see the Policy
Reference Guide.

The following policy example shows how to return an updated event to the
database.
// Log incoming event values

Log("Department number: " + @DEPTNO);
Log("Location: " + @LOC);
Log("Database name: " + @DNAME);
Log("Impacted: " + @IMPACTED);

68 Netcool/Impact: Solutions Guide

// Update the value of the Location field

@LOC = "New York City";

// Return the event to the database

ReturnEvent(EventContainer);

The following example shows how to delete an event from the database.
// Set the value of the DeleteEvent variable to true

@DeleteEvent = true; // @DeleteEvent name is case-sensitive

// Set the event field variables required by the database event listener
// in order to connect to Netcool/Impact

// Return the event to the database

ReturnEvent(EventContainer);

OMNIbus event listener service
The OMNIbus event listener service is used to integrate with Netcool/OMNIbus
and receive immediate notifications of fast track events.

The OMNIbus event listener is used to get fast track notifications from
Netcool/OMNIbus through the Accelerated Event Notification feature of
Netcool/OMNIbus. It receives notifications through the Insert, Delete, Update, or
Control (IDUC) channel. To set up the OMNIbus event listener, you must set its
configuration properties through the GUI. You can use the configuration properties
to specify one or more channels for which events get processed and also one or
more policies that are to be run in response to events received from
Netcool/OMNIbus.

Important:

v The OMNIbus event listener service works with Netcool/OMNIbus to monitor
ObjectServer events.

v If the Impact Server and OMNIbus server are in different network domains, for
the OMNIbus event listener service to work correctly, you must set the
Iduc.ListeningHostname property in the OMNIbus server. This property must
contain the IP address or fully qualified host name of the OMNIbus server.

For more information about Netcool/OMNIbus triggers and accelerated event
notification, and the Iduc.ListeningHostname property in the OMNIbus server, see
the Netcool/OMNIbus Administration Guide available from this website:

Tivoli Documentation Central

Setting up the OMNIbus event listener service
Use this procedure to create the OMNIbus event listener service.

Procedure
1. In the Tivoli Integrated Portal, in the navigation tree, click System

Configuration > Event Automation > Services, to open the Services tab.
2. If required, select a cluster from the Cluster list.
3. Click the Create New Service icon in the toolbar and select

OMNIbusEventListener to open the configuration window.

Chapter 3. Working with services 69

http://www.ibm.com/tivoli/documentation

4. Enter the required information in the configuration window.
5. Click the Save icon in the toolbar to create the service.
6. Start the service to establish a connection to the ObjectServer and subscribe to

one or more IDUC channels to get notifications for inserts, updates, and
deletes.

How to check the OMNIbus event listener service logs
Starting the OMNIbus event listener service establishes a connection between
Netcool/Impact and the ObjectServer.

To ensure that the OMNIbus event listener service started successfully, check the
service logs. A message like the following example is displayed if the service
started:
Initializing Service
Connecting to the Data Source: defaultobjectserver
Service Started
Attempting to connect for IDUC notifications
Established connection to the Data Source defaultobjectserver
IDUC Connection: Established:
Iduc Hostname : nc050094
Iduc Port : 58003
Iduc Spid : 2

Creating Triggers
You must create triggers before Netcool/Impact can receive accelerated events
from Netcool/OMNIbus.

Triggers notify Netcool/Impact of accelerated events. For more information about
creating triggers, see the IBM Tivoli Netcool/OMNIbus Administration Guide available
from the following website:

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus.

This example shows how to create a trigger to immediately notify Netcool/Impact
when there is an alert with a severity of 5 from Node called ImpactNode:
create or replace trigger ft_insert1
group trigger_group1
priority 1
after insert on alerts.status
for each row
begin

if (new.Severity = 5 AND new.Node = ’ImpactNode’)
then

iduc evtft ’default’ , insert, new
end if;

end;

Another example shows how to create a trigger that sends an accelerated event to
Netcool/Impact when an event with Customer internet_banking is deleted:
create or replace trigger ft_delete1
group trigger_group1
priority 1
before delete on alerts.status
for each row
begin

if (old.Customer = ’internet_banking’)

70 Netcool/Impact: Solutions Guide

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus

then
iduc evtft ’default’ , delete, old

end if;
end;

The following example shows how to create a trigger that immediately notifies
Netcool/Impact if a reinsertion of the event with the Node as New York is received:
create or replace trigger ft_reinsert1
group trigger_group1
priority 1
after reinsert on alerts.status
for each row
begin

if (new.Node = ’New York’)
then

iduc evtft ’default’ , insert, new
end if;

end;

The following example shows how to create a signal trigger that notifies you when
a gateway connection is established with the ObjectServer:
create or replace trigger notify_isqlconn
group trigger_group1
priority 1
on signal connect
begin

if(%signal.process = ’GATEWAY’)
then

iduc sndmsg ’default’, ’Gateway Connection from ’
+ %signal.node + ’ from user ’ + %signal.username + ’ at ’ +
to_char(%signal.at)

end if;
end;

Yet another example shows how to create a signal trigger that notifies you when
connection gets disconnected:
create or replace trigger notify_isqldisconn
group trigger_group1
priority 1
on signal disconnect
begin
if(%signal.process = ’isql’)
then

iduc sndmsg ’default’, ’ISQL Disconnect from ’ + %signal.node +
’ from user ’ + %signal.username + ’ at ’ + to_char(%signal.at)

end if;
end;

Using the ReturnEvent function
You can use the ReturnEvent function to insert, update, or delete events that
Netcool/Impact receives from Netcool/OMNIbus. To read more about the
ReturnEvent function, see the Policy Reference Guide.

This example shows how to use the ReturnEvent function to set the Node to
Impacted and to increment the Severity by 1:
@Node = ’Impacted’;
@Severity = @Severity + 1;
ReturnEvent(EventContainer);

Another example shows how to delete the event from alerts.status by using the
ReturnEvent function:

Chapter 3. Working with services 71

@DeleteEvent = TRUE;
ReturnEvent(EventContainer);

Subscribing to individual channels
How to subscribe to one or more OMNIbus channels for which Netcool/Impact
processes events received from Netcool/OMNIbus.

Procedure
1. In the OMNIbusEventListener configuration window, in One or more Channels

field, add the channel from which Netcool/Impact processes events.
2. To subscribe to more than one channel, add a comma between each channel

name.
3. To change the channel name or to add or remove one or more entries add the

changes and restart the OMNIbusEventListener service to implement the
changes.

Results

When Netcool/Impact receives a Fast Track event from a channel that matches one
of the configured channels, the OMNIbusEventListener service log displays the
following message:
Received Fast Track Message from channel: <channel_name>

When Netcool/Impact receives a Fast Track event that does not match any
configured channels, the OMNIbusEventListener service log displays the following
message:
Fast Track Message from channel:
<channel name> did not match any configured channels.

Restriction: Filtering messages by channel is only supported for Fast Track
messages that are sent by using the iduc evtf command. For signal messages sent
by using the iduc sndmsg command, Netcool/Impact does not filter the messages
by which channel they originated from. For information about these commands,
see the IBM Tivoli Netcool/OMNIbus Administration Guide available from the
following website:

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus.

Controlling which events get sent over from OMNIbus to
Netcool/Impact using Spid

You can use the Spid instead of a channel name to control which events get sent
over to Netcool/Impact.

When the OMNIbusEventListener Service starts, it displays the details of the
connection in the IMPACT_HOME/log/<servername>_omnibuseventlistener.log,
including the connection Spid. In the following example, the Spid is 2:
21 Feb 2012 11:16:07,363: Initializing Service
21 Feb 2012 11:16:07,363: Connecting to the Data Source: defaultobjectserver
21 Feb 2012 11:16:07,405: Service Started
21 Feb 2012 11:16:07,522: Attempting to connect for IDUC notifications
21 Feb 2012 11:16:07,919: Established connection to the Data Source defaultobjectserver
21 Feb 2012 11:16:08,035: IDUC Connection: Established:
21 Feb 2012 11:16:08,036: Iduc Hostname : nc050094
21 Feb 2012 11:16:08,036: Iduc Port : 60957
21 Feb 2012 11:16:08,036: Iduc Spid : 2

72 Netcool/Impact: Solutions Guide

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus

Knowing that Netcool/Impact is connected with the Spid 2, you can use the Client
ID, and configure the trigger to send the Accelerated Event Notification only to the
client with Spid=2 (Impact). An OMNIbus trigger has the following syntax:
IDUC EVTFT destination, action_type, row

Where:
v destination = spid | iduc_channel

– spid = integer_expression (The literal client connection ID)
– iduc_channel = string_expression (Channel name)

v action_type = INSERT | UPDATE | DELETE
v row = variable (Variable name reference of a row in the automation)

For example, the following trigger would tell OMNIbus to send notifications only
to Spid=2, which in this case is Netcool/Impact:
create or replace trigger ft_insert1
group trigger_group1
priority 1
after insert on alerts.status
for each row
begin
if (new.Severity >= 5)
then
iduc evtft 2 , insert, new
end if;
end;

For more information about OMNIbus triggers and accelerated event notification,
see the OMNIbus Administration Guide available from this website:

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus

Working with other services
This chapter contains information about working with other Netcool/Impact
services.

Policy activator service
The policy activator service activates policies at startup or at the intervals you
specify for each selected policy.

This is a default service that you can use instead of creating your own, or in
addition to creating your own.

Policy activator configuration
In a policy activator you can configure the policy activator name, the activation
interval, the policy you want to run at intervals, and the start up and logging
options.

Policy activator service configuration window:

Use this information to configure the policy activator service.

Table 22. Create New Policy Activator Service configuration window

Window element Description

Service name Enter a unique name to identify the service.

Chapter 3. Working with services 73

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus

Table 22. Create New Policy Activator Service configuration window (continued)

Window element Description

Activation Interval Select how often (in seconds) the service must activate the
policy. The default value is 30 on the policy activator
service that comes with Netcool/Impact. When you create
your own policy activator server the default value is 0.

Policy Select the policy you want the policy activator to run.

Startup: Automatically when
server starts

Select to automatically start the service when the server
starts. You can also start and stop the service from the
GUI.

Service log: Write to file Select to write log information to a file.

Policy logger service
The policy logger service is responsible for managing the policy log.

The log is a text stream used to record messages generated during the runtime of a
policy. The log contains both Netcool/Impact system messages and messages that
you create when you write a policy. The policy logger service specifies an
error-handling policy to activate when an error occurs during the execution of a
policy. It also specifies the logging levels for debugging policies and which items
must be logged. When you configure this service, you select a policy to handle the
errors as they occur.

Policy logger configuration
You can configure the following properties of the policy logger.
v Error handling policy
v Highest log level
v Logging of SQL statements
v Logging of pre-execution function parameters
v Logging of post-execution function parameters
v Policy profiling
v Logging and reporting options

Policy logger service configuration window:

Use this information to configure the policy logger service.

Table 23. Policy Logger Service configuration window

Window element Description

Error-handling Policy The error handling policy is the policy that is run by default
when an error is not handled by an error handler within the
policy where the error occurred.

Note: If you have a Policy Activator service and you want it
to utilize a default exception handler policy, you must specify
the following property in the
<servername>_<activatorservicename>.props file:
impact.<activatorservicename>.errorhandlername=<policy
name to run>

74 Netcool/Impact: Solutions Guide

Table 23. Policy Logger Service configuration window (continued)

Window element Description

Highest Log Level You can specify a log level for messages that you print to the
policy log from within a policy using the Log function.

When a log() statement in a policy is processed, the specified
log level is evaluated against the number that you select for
this field. If the level specified in this field is greater than or
equal to the level specified in the policy log() statement, the
message is recorded in the policy log.

Log what Select what you want to appear in the log:

v All SQL statements. Select to print all the contents of all
SQL statements made in calls to SQL database data sources.
Logging SQL statements can help you debug a policy that
uses external data sources.

v Pre-execution Action Module Parameters. Select to print the
values of all the parameters passed to a built-in action
function before the function is called in a policy. These
parameters include the values of built-in variables such as
DataItems and DataItem.

v Post-execution Action Module Parameters

v All Action Module Parameters

Policy Profiling: Enable Select to enable policy profiling. Policy profiling calculates the
total time that it takes to run a policy and prints this time to
the policy log

You can use this feature to see how long it takes to process
variable assignments and functions. You can also see how
long it takes to process an entire function and the entire
policy.

Service log: Write to file Select to write log information to a file.

Append Thread Name to
Log File Name

Select this option to name the log file by appending the name
of the thread to the default log file name.

Append Policy Name to
Log File Name

Select this option to name the log file by appending the name
of the policy to the default log file name.

Collect Reports: Enable Select to enable data collection for the Policy Reports.

If you choose to enable the Collect Reports option, reporting
related logs are written to the policy logger file only when
the log level is set to 3.

To see reporting related logs for a less detailed logging level
for example, log level 1, the NCHOME/impact/etc/
<servername>_policylogger.props file can be customized by
completing the following steps:

1. Add impact.policylogger.reportloglevel=1 to the
NCHOME/impact/etc/<servername>_policylogger.props
property.

2. Restart the Impact Server to implement the change.

Changing the size of the policylogger log file:

How to change the size of the policy logger log file and how to create more policy
logger files.

Chapter 3. Working with services 75

Procedure

1. Stop your Impact server and open the IMPACT_HOME/etc/
<servername>_policylogger.props file.

2. To change the size of the policylogger.log file, add the following properties to
the file:
impact.policylogger.maxlogsizebytes=[value in bytes]

3. To change the number of policylogger.log files, add the following properties
to the file:
impact.policylogger.maxbackupindex=[number of backup files]

4. Restart the server to implement the changes.
5. In a cluster setup, you must restart the secondary server so that it replicates

these customized properties on startup from the primary server.

Hibernating policy activator service
The hibernating policy activator service monitors hibernating policies and awakens
them at specified intervals.

You use the hibernating policy activator with X events in Y time solutions and
similar solutions that require the use of hibernating policies. When you configure
this service, you specify how often the service reactivates hibernating policies
waiting to be activated. It can be a specific period or absolute time that you have
defined.

Hibernating policy activator configuration
In the hibernation policy activator you can configure the wakeup interval, and the
start up and logging options.

Hibernating policy activator configuration window
Use this information to configure the hibernating policy activator.

Table 24. Hibernating Policy Activator service configuration window

Window element Description

Polling Interval Select a polling time interval (in seconds) to establish
how often you want the service to check hibernating
policies to see whether they are due to be woken up. The
default value is 30 seconds.

Process wakes up immediately Select to run the policy immediately after wake-up. The
wakeup interval is the interval in seconds at which the
hibernating policy activator checks hibernating policies in
the internal data repository to see if they are ready to be
woken.

Startup: Automatically when
server starts

Select to automatically start the service when the server
starts. You can also start and stop the service from the
GUI.

Service log: Write to file Select to write log information to a file.

Clear All Hibernations: Clear Should it become necessary, click to clear all hibernating
policies from the Impact Server.

Command execution manager service
The command execution manager is the service responsible for operating the
command and response feature.

76 Netcool/Impact: Solutions Guide

The service queues JRExecAction function calls to run external commands. The
command execution manager only allows you to specify whether to print the
service log to a file. There are no other configuration properties.

Command execution manager service configuration window
You can configure the command execution manager service to print the service log
to a file.

Command line manager service
Use the command-line manager service to access the Impact Server from the
command line to configure services parameters and start and stop services.

When you configure this service, you specify the port to which you connect when
you use the command line. You can also specify whether you want the service to
start automatically when the Impact Server starts. The command-line manager is
the service that manages the CLI. You can configure the port where the
command-line service runs, and the startup and logging options for the service.

The command line manager service is an independent, non-replicable service. In a
cluster, if a user stops or starts the service via the GUI, this will not stop or start
the service on the secondary cluster member.

Command line manager service configuration window
Use this information to configure the command line manager service.

Table 25. Command Line Manager Service Configuration window

Window element Description

Port Select a port number where you want to run the service from the list
or type the number. You telnet to this port when you use the CLI. The
default is 2000.

Startup:
Automatically
when server starts

Select to automatically start the service when the server starts. You
can also start and stop the service from the GUI.

Service log: Write
to file

Select to write log information to a file.

Chapter 3. Working with services 77

78 Netcool/Impact: Solutions Guide

Chapter 4. Working with policies

A policy is a set of operations that you want Netcool/Impact to perform.

Before you begin developing policies, you must be familiar with the policy log,
policy context, and policy scope aspects of the product.

Understanding policy language components
You use the Impact Policy Language (IPL), or JavaScript to write the policies that
you want Netcool/Impact to run.

The IPL is a scripting language similar in syntax to programming languages like
C/C++ and Java. It provides a set of data types, built-in variables, control
structures, and functions that you can use to perform a wide variety of event
management tasks. You can create your own variables and functions, as in other
programming languages.

JavaScript a scripting programming language commonly used to add interactivity
to web pages. It can also be used in browser environments. JavaScript uses the
same programming concepts that are used in IPL to write policies. For more
information about JavaScript syntax, see http://www.w3schools.com/js/
default.asp.

Policy log
The policy log is a text stream that records messages created during the runtime of
a policy.

The messages in the policy log provide information about the system status and
about any exceptions that might occur. You can write custom messages to the log
from within a policy using the Log function.

Policy context
The policy context is the set of all the variables whose values are assigned in the
current policy.

The policy context includes built-in variables such as EventContainer as well as the
variables that you define. You can access the value of this context from within a
policy using the CurrentContext function. This function returns a string that
contains the names and current value of all the variables in the policy.

Policy scope
The scope of all variables in a policy is global.

This means that everywhere you use a function, it will reference the same value,
regardless of whether you use it in the main program body or within a
user-defined function.

© Copyright IBM Corp. 2006, 2016 79

http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp

Printing to the policy log
Printing messages to the policy log is one of the most useful capabilities of
Netcool/Impact when it comes to testing and debugging policies.

You print messages to the policy log using the Log function. The Log function takes
the message you want to print as its runtime parameter.

This example is a version of the classic "Hello, World!" program used to teach
developers how to program in the C programming language. In the C version, you
print Hello, World! to the standard output. You are not permitted to access the
standard output stream using the policy language but you can print the message to
the policy log.

The policy, which consists of a single line, is as follows.
Log("Hello, World!");

Here, you simply call the Log function and pass the string Hello, World! as a
runtime parameter. As in programming languages like C/C+ and Java, you enclose
string literals in double quotation marks.

When you run the policy, it prints the following message to the policy log:
Hello, World!

User-defined variables
User-defined variables are variables that you define when you write a policy.

Any JavaScript reserved word or predefined JavaScript object and class names
must not be used as variable names in a JavaScript policy.

You can use any combination of letters and numbers as variable names as long as
the first variable starts with a letter:

You do not need to initialize variables used to store single values, such as strings
or integers. For context variables, you call the NewObject function, which returns a
new context. For event container variables, you call NewEvent. You do not need to
initialize the member variables in contexts and event containers.

The following example shows how to create and reference user-defined variables:
MyInteger = 1;
MyFloat = 123.4;
MyBoolean = True;
MyString = "Hello, World!";

MyContext = NewObject();
MyContext.Member = "1";

MyEvent = NewEvent();
MyEvent.Summary = "Event Summary";

Log(MyInteger + ", " + MyEvent.Summary);

In the example in this section, you create a set of variables and assign values to
them. Then, you use the Log function in two different ways to print the value of
the variables to the policy log.

80 Netcool/Impact: Solutions Guide

The first way you use Log is to print out each of the values as a separate call to the
function. The second way is to print out all the variables in the policy context at
once, using the CurrentContext function. The CurrentContext function returns a
string that contains the names and values of all the variables currently defined in
the policy.
VarOne = "One";
VarTwo = 2;
VarThree = 3.0;
VarFour = VarOne + ", " + VarTwo + ", " + VarThree;

Log(VarOne);
Log(VarTwo);
Log(VarThree);
Log(VarFour);

Log(CurrentContext());

When you run this policy, it prints the following message to the policy log:
One
2
3.0
One, Two, Three
"Prepared with user supplied parameters "=(Escalation=5, EventContainer=(),
VarTwo=Two, VarOne=One, ActionNodeName=TEMP, VarFour=One, Two, Three,
VarThree=Three, ActionType=1)

As shown above in the example, you do not have to declare variables before
assigning their values in the way that you do in languages like C/C++ and Java.
Arrays and scalar variables like integers or strings are created automatically the
first time you assign a value to them. Contexts and event containers, however,
must be explicitly created using the NewObject and NewEvent functions, as
described later in this guide.

Array
The array is a native data type that you can use to store sets of related values.

An array in Netcool/Impact represents a heterogeneous set of data, which means
that it can store elements of any combination of data types, including other arrays
and contexts. The data in arrays is stored as unnamed elements rather than as
member variables.

In IPL you assign values to arrays using the curly braces notation. This notation
requires you to enclose a comma-separated list inside curly braces. The values can
be specified as literals or as variables whose values you have previously defined in
the policy:
arrayname = {element1, element2, elementn}

Attention: Arrays in IPL and JavaScript are zero-based, which means that the
first element in the array has an index value of 0.

In JavaScript, use the square braces notation to assign array values as a
comma-separated series of numeric, string, or boolean literals:
arrayname = [element1, element2, elementn]

Important: You can create an array of any size by manually defining its elements.
You cannot import it from a file. You cannot have an array in an array unless it is
a multi-dimensional array.

Chapter 4. Working with policies 81

You access the value of arrays using the square bracket notation. This notation
requires you to specify the name of the array followed by the index number of the
element enclosed in square brackets. Use the following syntax to access the
elements of a one-dimensional array and a multi-dimensional array:
arrayname[element index]

arrayname[first dimension element index][second dimension element index]

Examples

Here is an example of a one-dimensional array in IPL:
MyArray = {"Hello, World!", 12345};
Log(MyArray[0] + ", " + MyArray[1]);

Here is an example of a one-dimensional array in JavaScript:
MyArray = ["Hello, World!", 12345];
Log(MyArray[0] + ", " + MyArray[1]);

It prints the following text to the policy log:
Hello.World!, 12345

Here in an example of a two-dimensional array in IPL:
MyArray = {{"Hello, World!", 12345}, {"xyz", 78, 7, "etc"}};
Log(MyArray[0][0] + "." + MyArray[1][0]);

Here in an example of a two-dimensional array in JavaScript:
MyArray = [["Hello, World!", 12345], ["xyz", 78, 7, "etc"]];
Log(MyArray[0][0] + "." + MyArray[1][0]);

It prints the following text to the policy log:
Hello.World!.xyz

This example policy in IPL, uses the same two-dimensional array and prints the
label and the value of an element to the parser log:
MyArray = {{"Hello, World!", 12345}, {"xyz", 78, 7, "etc"}};
log("MyArray is " + MyArray);
log("MyArray Length is " + length(MyArray));
ArrayA = MyArray[0];
log("ArrayA is " + ArrayA + " Length is " + length(ArrayA));
i = 0;
While(i < length(ArrayA)) {

log("ArrayA["+i+"] = " + ArrayA[i]);
i = i+1;

}
ArrayB = MyArray[1];
log("ArrayB is " + ArrayB + " Length is " + length(ArrayB));
i = 0;
While(i < length(ArrayB)) {

log("ArrayB["+i+"] = " + ArrayB[i]);
i = i+1;

}

This example policy in JavaScript, uses the same two-dimensional array and prints
the label and the value of an element to the parser log:
MyArray = [["Hello, World!", 12345], ["xyz", 78, 7, "etc"]];
Log("MyArray is " + MyArray);
Log("MyArray Length is " + Length(MyArray));
ArrayA = MyArray[0];
Log("ArrayA is " + ArrayA + " Length is " + Length(ArrayA));

82 Netcool/Impact: Solutions Guide

i = 0;
while(i < Length(ArrayA)) {

Log("ArrayA["+i+"] = " + ArrayA[i]);
i = i+1;

}
ArrayB = MyArray[1];
Log("ArrayB is " + ArrayB + " Length is " + Length(ArrayB));
i = 0;
while(i < Length(ArrayB)) {

Log("ArrayB["+i+"] = " + ArrayB[i]);
i = i+1;

}

Here is the output in the parser log:
ArrayA[0] = Hello World!
ArrayA[1] = 12345

In the following policy, you assign a set of values to arrays and then print the
values of their elements to the policy log.
Array1 = {"One", "Two", "Three", "Four",
"Five"};
Array2 = {1, 2, 3, 4, 5};
Array3 = {"One", 2, "Three", 4, "Five"};

String1 = "One";
String2 = "Two";
Array4 = {String1, String2};

Log(Array1[0]);
Log(Array2[2]);
Log(Array3[3]);
Log(Array4[1]);

Log(CurrentContext());

Here, you assign sets of values to four different arrays. In the first three arrays,
you assign various string and integer literals. In the fourth array, you assign
variables as the array elements.

When you run the policy, it prints the following message to the policy log:
One
3
4
Two
"Prepared with user supplied parameters "=(String2=Two, ActionType=1,
String1=One, EventContainer=(), ActionNodeName=TEMP, Escalation=6,
Array4={One, Two}, Array3={One, 2, Three, 4, Five}, Array2={1, 2,
3, 4, 5},
Array1={One, Two, Three, Four, Five})

Context
Context is a data type that you can use to store sets of data.

Contexts are like the struct data type in C/C++. Contexts can be used to store
elements of any combinations of data types, including other contexts and arrays.
This data is stored in a set of variables called member variables that are
"contained" inside the context. Member variables can be of any type, including
other contexts.

Chapter 4. Working with policies 83

You reference member variables using the dot notation. This is also the way that
you reference member variables in a struct in languages like C and C++. In this
notation, you specify the name of the context and the name of the member variable
separated by a period (.). You use this notation when you assign values to member
variables and when you reference the variables elsewhere in a policy.

Important: A built-in context is provided, called the policy context, that is created
automatically whenever the policy is run. The policy context contains all of the
variables used in the policy, including built-in variables.

Unlike arrays and scalar variables, you must explicitly create a context using the
NewObject function before you can use it in a policy. You do not need to create the
member variables in the context. Member variables are created automatically the
first time you assign their value.

The following example shows how to create a new context, and how to assign and
reference its member variables:
MyContext = NewObject();
MyContext.A = "Hello, World!";
MyContext.B = 12345;

Log(MyContext.A + ", " + MyContext.B);

This example prints the following message to the policy log:
Hello, World!, 12345

The following policy shows how to create a context called MyContext and assign a
set of values to its member variables.
MyContext
= NewObject();

MyContext.One = "One";
MyContext.Two = 2;
MyContext.Three = 3.0;

String1 = MyContext.One + ", " + MyContext.Two + ", " + MyContext.Three;

Log(String10;

When you run this policy, it prints the following message to the policy log:
One, 2, 3.0

If statements
You use the if statement to perform branching operations.

Use the if statement to control which statements in a policy are executed by
testing the value of an expression to see if it is true. The if statement in the Impact
Policy Language is the same as the one used in programming languages like
C/C++ and Java.

The syntax for an if statement is the if keyword followed by a Boolean expression
enclosed in parentheses. This expression is followed by a block of statements
enclosed in curly braces. Optionally, the if statement can be followed by the else
or elseif keywords, which are also followed by a block of statements.
if (condition){

statements
} elseif (condition){

84 Netcool/Impact: Solutions Guide

statements
} else {

statements
}

Where condition is a boolean expression and statements is a group of one or
more statements. For example:
if (x == 0) {

Log("x equals zero");
} elseif (x == 1){

Log("x equals one");
} else {

Log("x equals any other value.");
}

When the if keyword is encountered in a policy, the Boolean expression is
evaluated to see if it is true. If the expression is true, the statement block that
follows is executed. If it is not true, the statements is skipped in the block. If an
else statement follows in the policy, the corresponding else statement block is
executed.

In this example policy, you use the if statement to test the value of the Integer1
variable. If the value of Integer1 is 0, the policy runs the statements in the
statement block.
Integer1 = 0;

if (Integer1 == 0) {
Log("The value of Integer1 is zero.");

}

When you run this policy, it prints the following message to the policy log:
The value of Integer1 is zero.

Another example shows how to use the else statement. Here, you set the value of
the Integer1 variable to 2. Since the first test in the if statement fails, the
statement block that follows the else statement is executed.
Integer1 = 2;

if (Integer1 == 1) {
Log("The value of Integer1 is one.");

} else {
Log("The value of Integer1 is not one.");

}

When you run this example, it prints the following message to the policy log:
The value of Integer1 is not one.

While statements
You use the while statement to loop over a set of instructions until a certain
condition is met.

You can use the while statement to repeat a set of operations until a specified
condition is true. The while statement in the Impact Policy Language is the same
as the one used in programming languages like C, C++, and Java.

Chapter 4. Working with policies 85

The syntax for the while statement is the while keyword followed by a Boolean
expression enclosed in parentheses. This expression is followed by a block of
statements enclosed in curly braces.
while (condition) { statements }

where condition is a boolean expression and statements is a group of one or more
statements. For example:
I = 10;
while(I > 0) {

Log("The value of I is: " + I);
I = I - 1;

}

When the while keyword is encountered in a policy, the Boolean expression is
evaluated to see if it is true. If the expression is true, the statements in the
following block are executed. After the statements are executed, Netcool/Impact
again tests the expression and continues executing the statement block repeatedly
until the condition is false.

The most common way to use the while statement is to construct a loop that is
executed a certain number of times depending on other factors in a policy. To use
the while statement in this way, you use an integer variable as a counter. You set
the value of the counter before the while loop begins and decrement it inside the
loop. The While statement tests the value of the counter each time the loop is
executed and exits when the value of the counter is zero.

The following example shows a simple use of the while statement:
Counter = 10;

while (Counter > 0) {
Log("The value of Counter is " + Counter);
Counter = Counter - 1;

}

Here, you assign the value of 10 to a variable named Counter. In the while
statement, the policy tests the value of Counter to see if it is greater than zero. If
Counter is greater than zero, the statements in the block that follows is executed.
The final statement in the block decrements the value of Counter by one. The
While loop in this example executes 10 times before exiting.

When you run this example, it prints the following message to the policy log:
The value of Counter is 10
The value of Counter is 9
The value of Counter is 8
The value of Counter is 7
The value of Counter is 6
The value of Counter is 5
The value of Counter is 4
The value of Counter is 3
The value of Counter is 2
The value of Counter is 1

The following example shows how to use the While statement to iterate through
an array. You often use this technique when you handle data items retrieved from
a data source.
MyArray = {"One", "Two", "Three", "Four"};

Counter = Length(MyArray);

86 Netcool/Impact: Solutions Guide

while (Counter > 0) {
Index = Counter - 1;
Log(MyArray[Index]);
Counter = Counter - 1;
}

Here, you set the value of Counter to the number of elements in the array. The
While statement loops through the statement block once for each array element.
You set the Index variable to the value of the Counter minus one. This is because
arrays in IPL are zero-based. This means that the index value of the first element is
0, rather than 1.

When you run this example, it prints the following message to the policy log:
Four
Three
Two
One

In these examples, when you use this technique to iterate through the elements in
an array, you access the elements in reverse order. To avoid doing this, you can
increment the counter variable instead of decrementing it in the loop. This requires
you to test whether the counter is less than the number of elements in the array
inside the While statement.

The following example shows how to loop through an array while incrementing
the value of the counter variable.
MyArray = {"One", "Two", "Three", "Four"};

ArrayLength = Length(MyArray);
Counter = 0;

while (Counter < ArrayLength) {
Log(MyArray[Counter]);
Counter = Counter + 1;

}

When you run this policy, it prints the following message to the policy log:
One
Two
Three
Four

User-defined functions
User-defined functions are functions that you use to organize your code in the
body of a policy.

Once you define a function, you can call it in the same way as the built-in action
and parser functions. Variables that are passed to a function are passed by
reference, rather than by value. This means that changing the value of a variable
within a function also changes the value of the variable in the general scope of the
policy.

User-defined functions cannot return a value as a return parameter. You can return
a value by defining an output parameter in the function declaration and then
assigning a value to the variable in the body of the function. Output parameters
are specified in the same way as any other parameter.

Chapter 4. Working with policies 87

You can also declare your own functions and call them within a policy.
User-defined functions help you encapsulate and reuse functionality in your policy.

The syntax for a function declaration is the Function keyword followed by the
name of the function and a comma-separated list of runtime parameters. The list of
runtime parameters is followed by a statement block that is enclosed in curly
braces.

Unlike action and parser functions, you cannot specify a return value for a
user-defined function. However, because the scope of variables in IPL policy is
global, you can approximate this functionality by setting the value of a return
variable inside the function.

Function declarations must appear in a policy before any instance where the
function is called. The best practice is to declare all functions at the beginning of a
policy.

The following example shows how to declare a user-defined function called
GetNodeByHostname. This function looks up a node in an external data source by
using the supplied host name.
Function GetNodeByHostName(Hostname) {

DataType = "Node";
Filter = "Hostname =’" + Hostname + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);
MyNode = MyNodes[0];
}

You call user-defined functions in the same way that you call other types of
functions. The following example shows how to call the function.
GetNodeByHostName("ORA_HOST_01");

Here, the name of the node that you want to look up is ORA_HOST_01. The function
looks up the node in the external data source and returns a corresponding data
item named MyNode. For more information about looking up data and on data
items, see the next chapter in this book.

Important:

When you write an Impact function, check that you do not call the function within
the function body as this might cause a recursive loop and cause a stack overflow
error.

Function declarations

Function declarations are similar to those in scripting languages like JavaScript.
Valid function names can include numbers, characters, and underscores, but cannot
start with a number.

The following is an example of a user-defined function:
Function MyFunc(DataType, Filter, MyArray) {

MyArray = GetByFilter(DataType, Filter, False);
}

88 Netcool/Impact: Solutions Guide

Calling user-defined functions

You can call a user-defined function as follows:
Funcname([param1, param2 ...])

The following example shows a user-defined function call:
MyFunc("User", "Location = ’New York’", Users);

Examples of user-defined functions

The following example show how variables are passed to a function by reference:
// Example of vars by reference

Function IncrementByA(NumberA, NumberB) {
NumberB = NumberB + NumberA;

}

SomeInteger = 10;
SomeFloat = 100.001;

IncrementByA(SomeInteger, SomeFloat);

Log("SomeInteger is now: " + SomeInteger);
// will return: IntegerA is now 10

Log("SomeFloat is now: " + SomeFloat);
// will return: FloatB is now 110.001

The following example shows how policies handle return values in user-defined
functions:
// Example of no return output

Function LogTime(TimeToLog) {
If (TimeToLog == NULL) {

TimeToLog = getdate();
}
Log("At the tone the time will be: "+ localtime(TimeToLog));

}

LoggedTime = LogTime(getdate());

Log("LoggedTime = "+LoggedTime);

// will return: "LoggedTime = NULL" as nothing can be
// returned from user functions

Scheduling policies
You can set up Netcool/Impact to run policies at specific times.

Running policies using the policy activator
You can use a policy activator service to run one policy at specified intervals
during Netcool/Impact run time.

For example, if you want to run a policy named CHECK_SYSTEM_STATUS every 60
minutes during the day, create a policy activator, specify the name of the policy
and the time interval. Then start the service in the GUI Server. If you want to run a
different policy at specific times of day or week, you must use schedules.

Chapter 4. Working with policies 89

Running policies using schedules
You can use schedules with a policy activator to run one or more policies at
specific times.

Procedure
1. Create a schedule.

The first step in setting up policies to run at specific times is to create a
schedule data type in the GUI. For more information, see “Creating a schedule
data type.”

2. Create an internal data type that represents each policy as a task.
After you create the schedule data type, you must create a data type that
represents each policy as a task. The task data type can be an internal data type
and typically has two user-defined fields. A field that contains a descriptive
name for the task and one that contains the name of the policy associated with
the task. For more information, see “Creating task data types” on page 91.

3. Create task data items.
After you create the task data type, the next step is to create a task data item
for each policy that you want to schedule. For more information, see “Creating
task data items” on page 91.

4. Add the tasks to the schedule.
After you have created the task data items, the next step is to add the tasks to
the schedule that you created at the beginning. This requires you to specify the
task that you want to schedule and the date or time at which you want the
associated policy to be run. For more information, see “Adding the tasks to the
schedule” on page 91.

5. Specify time ranges for each task.
6. Write a top scheduler policy that launches the tasks.

A top scheduler policy is a policy that is responsible for checking the schedule
to see whether any other policy is currently due to be run. For more
information, see “Writing a top scheduler policy” on page 92.

7. Create a policy activator and configure it to run the top scheduler.
The policy activator runs the top scheduler policy at intervals. When the top
scheduler policy runs, it checks to see if any other policies are currently "on
call" and then runs them. You can configure the policy activator to run at any
interval of time. For more accurate timing of scheduled policies, use smaller
intervals. For more information, see “Creating a policy activator” on page 92.

8. Start the policy activator.
To start the policy activator, click the Start Service icon associated with the new
policy activator where it is displayed in the Services tab in the toolbar.

Creating a schedule data type
You can create a schedule data type in the GUI Server.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Select a cluster from the Cluster list. From the Project list, select Global.
3. In the Data Model tab, click Schedule, right click and select New Data Type to

open the New Data Type for Schedule tab.
4. Enter a unique name for the schedule in the Data Type Name field.
5. Click the Save icon to implement to create the schedule data type.

90 Netcool/Impact: Solutions Guide

Creating task data types
Use this procedure to create the task data type.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Select a cluster and a project from theCluster and Project lists.
3. In the Data Model tab, click Internal, right click and select New Data Type to

open the New Data Type for Internal tab.
4. Enter a unique name for the data type in the Data Type Name field, for

example, Tasks.
5. Create new fields that contain a descriptive title for the task and the name of

the policy as follows:
a. Click New Field to open the New field window.

Use this window to define the attributes for the data type fields.
b. Enter a unique ID in the ID field, for example, TaskName or PolicyName.
c. From the Format list, select String.

The Display Name and Description fields in this window are optional. For
fields in internal data types, the actual name and display name must always
be the same as the field ID. If you leave these fields empty, they will be
automatically populated with the ID value.

d. Click OK to save the changes and return to the data type tab.
6. From the Display Name Field list, select the field that contains the task name.

This display name is displayed when you browse data items in the data type. It
does not otherwise affect the behavior of the data type.

7. Click the Save icon to implement the changes and to create the task data type.

Creating task data items
Use this procedure to create a task data item.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Select a cluster and a project from theCluster and Project lists.
3. In the Data Model tab, expand the Internal data type, select the task data item,

right click and select View Data Items.
4. Click the New icon on the menu.
5. Enter values for the Key field and for the task name and policy name fields that

you defined when you create the tasks data type. The value for the Key field
can be the same as the task name. However, if the data items are created in the
internal data type or any other data type to be used in the schedule
configuration, the Key field must be unique across the data type and all tasks
and policies.

6. Click OK. Then click Save to create the data item.

Adding the tasks to the schedule
Use this procedure to add a task to the schedule.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation

click Data Model to open the Data Model tab.

Chapter 4. Working with policies 91

2. In the Data Model tab, expand Schedule data source, select the schedule task
you created, then right click and select New Data Items to open the Data
items: Schedule tab.

3. Click New to open the Schedule Editor.
4. In the Schedule Name field, enter a name for the schedule.
5. Add a description to the Description field.
6. From the Edit Members By Type list, select the name of the task data type

that you created and click Edit.
7. In the Select Schedule Members window that opens, select the tasks that you

want to schedule and click Add.
8. Click OK.
9. In the Schedule Editor window, select the task that you want to schedule in

the Schedule Members list.
10. Select the type of time range you want to associate with the task from the

Add New Time Range list and then click New . The possible types of time
ranges are Daily, Weekly and Absolute.

11. In the Edit Time Range window that opens, specify the time range and time
zone during which you want the policy to run. The exact time at which the
policy is run depends on both this time range and the frequency at which the
policy activator runs the top scheduler policy. Click OK.

12. Click OK again to exit the Schedule Editor window.

Writing a top scheduler policy
A top scheduler policy is a policy that is responsible for checking the schedule to
see whether any other policy is currently due to be run.

It is also responsible for launching the policy. The top scheduler policy calls the
GetScheduleMember function and retrieves the task data item that is currently "on
call." It then obtains the name of the policy associated with the task and runs it
using the Activate function.

The following example shows a typical top scheduler policy. In this example, the
name of the schedule data type is Schedule and the name of the schedule itself is
TasksSchedule. The Tasks data type contains a field named PolicyName that
specifies the name of the policy to run.
// Call GetByKey and retrieve the schedule data item that contains
// the schedule of tasks

DataType = "Schedule";
Key = "TasksSchedule";
MaxNum = 1;

Schedules = GetByKey(DataType, Key, MaxNum);

// Call GetScheduleMember and retrieve the task that is currently
// "on call"

Tasks = GetScheduleMember(Schedules[0], 0, False, GetDate());

// Call Activate and launch the policy associated with the task

Activate(Null, Tasks[0].PolicyName);

Creating a policy activator
Use this procedure to create the policy activator.

92 Netcool/Impact: Solutions Guide

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Services to open the Services tab.
2. In the Services tab, click the Create New Service icon on the toolbar. Click

Policy Activator to open the New Policy Activator tab.
3. In the Service Name field, enter a unique name for the policy activator.
4. In the Activation Interval field, enter the interval in seconds at which you

want the policy activator to run the top scheduler policy
5. From the Policy list, select the top scheduler policy that you created.
6. Select the Startup check box if you want the policy activator to run

automatically when the server starts.
7. Select the Service Log check box if you want to write the service logs to a file.
8. Click the Save icon on the toolbar to create the policy activator.

Chapter 4. Working with policies 93

94 Netcool/Impact: Solutions Guide

Chapter 5. Handling events

From within an IPL policy, you can access and update field values of incoming
events; add journal entries to events; send new events to the event source; and
delete events in the event source.

Events overview
An event is a set of data that represents a status or an activity on a network. The
structure and content of an event varies depending on the device, system, or
application that generated the event but in most cases, events are
Netcool/OMNIbus alerts.

These events are generated by Netcool probes and monitors, and are stored in the
ObjectServer database. Events are obtained using event readers, event listeners,
and e-mail readers services.

Incoming event data are stored using the built-in EventContainer variable. This
variable is passed to the policy engine as part of the context when a policy is
executed. When you write a policy, you can access the fields in the event using the
member variables of EventContainer.

Event containers
The event container is a native Netcool/Impact data type used to store event data.

The event container consists of a set of event field and event state variables.

EventContainer variable
The EventContainer is a built-in variable that stores the field data for incoming
events.

Each time an event is passed to the policy engine for processing, it creates an
instance of EventContainer, populates the event field variables and stores it in the
policy context. You can then access the values of the event fields from within the
policy.

Event field variables
Event field variables are member variables of an event container that store the field
values in an event.

There is one event field variable for each field in an event. The names of event
field variables are the same as the event field names. For example, if an event has
fields named AlertKey, Node, Severity, and Summary, the corresponding event
container has event field variables with the same names.

© Copyright IBM Corp. 2006, 2016 95

Event state variables
Event state variables are a set of predefined member variables that you can use to
specify the state of an event when you send it to the event source using the
ReturnEvent function.

Two event state variables are used: JournalEntry and DeleteEvent. For information
about using JournalEntry, see “Adding journal entries to events” on page 97. For
information about using DeleteEvent, see “Deleting events” on page 99.

User-defined event container variables
User-defined event container variables are variables that you create using the
NewEvent function.

You use these variables when you send new events to the event source, or when
you want to temporarily store event data within a policy.

Accessing event fields
You can use either the dot notation or the @ notation to access the values of event
fields.

Using the dot notation
You use the dot notation to access the value of event fields in the same way you
access the values of member variables in a struct in languages like C and C++.

The following policy shows how to use the dot notation to access the value of the
Node, Severity, and Summary fields in an incoming event and print them to the
policy log:
Log(EventContainer.Node);
Log(EventContainer.Severity);
Log(EventContainer.Summary);

Using the @ notation
If you are using IPL, you can use the @ notation to access event fields.

The @ notation is shorthand that you can use to reference the event fields in the
built-in EventContainer variable without having to spell out the EventContainer
name. If you are using JavaScript you must use EventContainer.Identifier.

The following policy shows how to use the @ notation to access the value of the
Node, Severity, and Summary fields in an incoming event and print them to the
policy log:
Log(@Node);
Log(@Severity);
Log(@Summary);

Updating event fields
To update fields in an incoming event, you assign new values to event field
variables in the EventContainer.

An event with a new value assigned to its field variable will not be updated until
you call the ReturnEvent function.

96 Netcool/Impact: Solutions Guide

The following examples show how to update the Summary and Severity fields in an
incoming event.
@Summary = "Node down";
@Summary = @Summary + ": Updated by Netcool/Impact";
@Severity = 3;
@Severity = @Severity + 1;

Adding journal entries to events
You can use IPL and JavaScript to add journal entries to existing
Netcool/OMNIbus events.

About this task

You can only add journal entries to events that exist in the ObjectServer database.
You cannot add journal entries to new events that you have created using the
NewEvent function in the currently running policy. Follow these steps to add a
journal entry to an event.

Procedure
1. Assign the journal text to the JournalEntry variable.

JournalEntry is an event state variable used to add new journal entries to an
existing event. For more information, see “Assigning the JournalEntry
variable.”

2. Send the event to the event source using the ReturnEvent function.
Call ReturnEvent and pass the event container as a runtime parameter, in the
following manner:
ReturnEvent(EventContainer);

Example

The following example shows how to add a new journal entry to an incoming
event.
// Assign the journal entry text to the JournalEntry variable

@JournalEntry = ’Modified on ’ + LocalTime(GetDate()) + "\r\n" +
’Modified by Netcool\Impact.’;

// Send the event to the event source using ReturnEvent

ReturnEvent(EventContainer);

Assigning the JournalEntry variable
JournalEntry is an event state variable used to add new journal entries to an
existing event.

Netcool/Impact uses special rules for interpreting string literals assigned to
JournalEntry. Text stored in JournalEntry must be assigned using single quotation
marks, except for special characters such as \r, \n and \t, which must be assigned
using double quotation marks. If you want to use both kinds of text in a single
entry, you must specify them separately and then concatenate the string using the
+ operator.

To embed a line break in a journal entry, you use an \r\n string.

Chapter 5. Handling events 97

The following examples show how to assign journal text to the JournalEntry
variable.
@JournalEntry = ’Modified by Netcool/Impact’;
@JournalEntry = ’Modified on ’ + LocalTime(GetDate());
@JournalEntry = ’Modified on ’ + LocalTime(GetDate()) + "\r\n" +
’Modified by Netcool/Impact’;

Sending new events
Use this procedure to send new events to an event source.

Procedure
1. Create an event container using the NewEvent function

To create an event container, you call the NewEvent function and pass the name
of the event reader associated with the event source, in the following manner:
MyEvent = NewEvent("defaulteventreader");

The function returns an empty event container.
2. Set the EventReaderName member variable:

MyEvent.EventReaderName = "defaulteventreader";

3. Populate the event fields by assigning values to its event field variables.
For example:
MyEvent.EventReaderName = "defaulteventreader";
MyEvent.Node = "192.168.1.1";
MyEvent.Summary = "Node down";
MyEvent.Severity = 5;
MyEvent.AlertKey = MyEvent.Node + ":" + MyEvent.Summary;

4. Send the event to the data source using the ReturnEvent function.
Call the ReturnEvent function, and pass the new event container as a runtime
parameter, in the following manner:
ReturnEvent(MyEvent);

Example

The following example shows how to create, populate, and send a new event to an
event source.
// Create a new event container

MyEvent = NewEvent("defaulteventreader");

// Populate the event container member variables

MyEvent.EventReaderName = "defaulteventreader";
MyEvent.Node = "192.168.1.1";
MyEvent.Summary = "Node down";
MyEvent.Severity = 5;
MyEvent.AlertKey = MyEvent.Node + ":" + MyEvent.Summary;

// Add a journal entry (optional)

MyEvent.JournalEntry = ’Modified on ’ + LocalTime(GetDate()) + "\r\n" +
’Modified by Netcool/Impact";

// Send the event to the event source

ReturnEvent(MyEvent);

98 Netcool/Impact: Solutions Guide

Deleting events
Use this procedure to delete an incoming event from the event source.

Procedure
1. Set the DeleteEvent variable in the event container.

The DeleteEvent variable is an event state variable that you use to specify that
an event is to be deleted when it is sent back to the event source. You must set
the value of DeleteEvent to True in order for an event to be deleted. For
example:
@DeleteEvent = True;

2. Send the event to the event source using the ReturnEvent function.
For example:
ReturnEvent(EventContainer);

Examples of deleting an incoming event from the event
source

These examples show how to delete an incoming event from the event source
using IPL, and JavaScript.
v Impact Policy Language:

// Set the DeleteEvent Variable

@DeleteEvent = True;

// Send the event to the event source

ReturnEvent(EventContainer);

v JavaScript:
// Set the DeleteEvent Variable

EventContainer.DeleteEvent = true;

// Send the event to the event source

ReturnEvent(EventContainer);

Chapter 5. Handling events 99

100 Netcool/Impact: Solutions Guide

Chapter 6. Handling data

You can handle data in a policy.

From within a policy you can retrieve data from a data source by filter, by key, or
by link; delete, or add data to a data source; update data in a data source; and call
database functions, or stored procedures.

You can access data stored in a wide variety of data sources. These include many
commercial databases, such as Oracle, Sybase, and Microsoft SQL Server. You can
also access data stored in LDAP data source and data stored by various third-party
applications, including network inventory managers and messaging systems.

Working with data items
Data items are elements of the data model that represent actual units of data stored
in a data source.

The structure of this unit of data depends on the category of the associated data
source. For example, if the data source is an SQL database data type, each data
item corresponds to a row in a database table. If the data source is an LDAP
server, each data item corresponds to a node in the LDAP hierarchy.

Field variables
Field variables are member variables in a data item. There is one field variable for
each data item field. Field variable names are the same as the names in the
underlying data item fields. For example, if you have a data item with two fields
named UserID and UserName, it will also have two field variables named UserID
and UserName.

DataItem and DataItems variables
The DataItems variable is a built-in variable of type array that is used by default to
store data items returned by GetByFilter, GetByKey, GetByLinks or other functions
that retrieve data items. If you do not specify a return variable when you call these
functions, Netcool/Impact assigns the retrieved data items to the DataItems
variable.

The DataItem variable references the first item (index 0) in the DataItems array.

Retrieving data by filter
Retrieving data by filter means that you are getting data items from a data type
where you already know the value of one or more of the fields.

When you retrieve data by filter, you are saying: "Give me all the data items in this
type, where certain fields contain these values."

Working with filters
A filter is a text string that sets out the conditions under which Netcool/Impact
retrieves the data items.

© Copyright IBM Corp. 2006, 2016 101

The use of filters with internal, SQL, LDAP, and some Mediator data types is
supported. The format of the filter string varies depending on the category of the
data type.

SQL filters
SQL filters are text strings that you use to specify a subset of the data items in an
internal or SQL database data type.

For SQL database and internal data types, the filter is an SQL WHERE clause that
provides a set of comparisons that must be true in order for a data item to be
returned. These comparisons are typically between field names and their
corresponding values.

Syntax

For SQL database data types, the syntax of the SQL filter is specified by the
underlying data source. The SQL filter is the contents of an SQL WHERE clause
specified in the format provided by the underlying database. When the data items
are retrieved from the data source, this filter is passed directly to the underlying
database for processing.

For internal data types, the SQL filter is processed internally by the policy engine.
For internal data types, the syntax is as follows:
Field

Operator
Value [AND | OR | NOT (Field
Operator
Value) ...]

where Field is the name of a data type field, Operator is a comparative operator,
and Value is the field value.

Attention: Note that for both internal and SQL data types, any string literals in
an SQL filter must be enclosed in single quotation marks. The policy engine
interprets double quotation marks before it processes the SQL filter. Using double
quotation marks inside an SQL filter causes parsing errors.

Operators

The type of comparison is specified by one of the standard comparison operators.
The SQL filter syntax supports the following comparative operators:
v >
v <
v =
v <=
v =>
v !=
v LIKE

Restriction: You can use the LIKE operator with regular expressions as
supported by the underlying data source.

The SQL filter syntax supports the AND, OR and NOT boolean operators.

102 Netcool/Impact: Solutions Guide

Tip: Multiple comparisons can be used together with the AND, OR, and NOT
operators.

Order of operation

You can specify the order in which expressions in the SQL are evaluated using
parentheses.

Examples

Here is an example of an SQL filter:
Location = ’NYC’
Location LIKE ’NYC.*’
Facility = ’Wandsworth’ AND Facility = ’Putney’
Facility = ’Wall St.’ OR Facility = ’Midtown’
NodeID >= 123345
NodeID != 123234

You can use this filter to get all data items where the value of the Location field is
New York:
Location = ’New York’

Using this filter you get all data items where the value of the Location field is New
York or New Jersey:
Location = ’New York’ OR Location = ’New Jersey’

To get all data items where the value of the Location field is Chicago or Los
Angeles and the value of the Level field is 3:
(Location = ’New York’ OR Location = ’New Jersey’) AND Level = 3

LDAP filters
LDAP filters are filter strings that you use to specify a subset of data items in an
LDAP data type.

The underlying LDAP data source processes the LDAP filters. You use LDAP filters
when you do the following tasks:
v Retrieve data items from an LDAP data type using GetByFilter.
v Retrieve a subset of linked LDAP data items using GetByLinks.
v Delete individual data items from an LDAP data type.
v Specify which data items appear when you browse an LDAP data type in the

GUI.

Syntax

An LDAP filter consists of one or more boolean expressions, with logical operators
prefixed to the expression list. The boolean expressions use the following format:
Attribute

Operator
Value

where Attribute is the LDAP attribute name and Value is the field value.

The filter syntax supports the =, ~=, <, <=, >, >=, and ! operators, and provides
limited substring matching using the * operator. In addition, the syntax also
supports calls to matching extensions defined in the LDAP data source. White

Chapter 6. Handling data 103

space is not used as a separator between attribute, operator, and value, and those
string values are not specified using quotation marks.

For more information on LDAP filter syntax, see Internet RFC 2254.

Operators

As with SQL filters, LDAP filters provide a set of comparisons that must be true in
order for a data item to be returned. These comparisons are typically between field
names and their corresponding values. The comparison operators supported in
LDAP filters are:
v =
v ~=,
v <
v <=
v >
v >=
v !

One difference between LDAP filters and SQL filters is that any Boolean operators
used to specify multiple comparisons must be prefixed to the expression. Another
difference is that string literals are not specified using quotation marks.

Examples

Here is an example of an LDAP filter:
(cn=Mahatma Gandhi)
(!(location=NYC*))
(&(facility=Wandsworth)(facility=Putney))
(|(facility=Wall St.)(facility=Midtown)(facility=Jersey City))
(nodeid>=12345)

You can use this example to get all data items where the common name value is
Mahatma Gandhi:
(cn=Mahatma Gandhi)

Using this example you get all data items where the value of the location attribute
does not begin with the string NYC:
(!(location=NYC*))

To get all data items where the value of the facility attribute is Wandsworth or
Putney:
(|(facility=Wandsworth)(facility=Putney))

Mediator filters
You use Mediator filters with the GetByFilter function to retrieve data items from
some Mediator data types.

The syntax for Mediator filters varies depending on the underlying DSA. For more
information about the Mediator syntax for a particular DSA, see the DSA
documentation.

104 Netcool/Impact: Solutions Guide

Retrieving data by filter in a policy
To retrieve data by filter, you call the GetByFilter function and pass the name of
the data type and the filter string.

The function returns an array of data items that match the conditions in the filter.
If you do not specify a return variable, GetByFilter assigns the array to the
built-in variable DataItems.

Example of retrieving data from an SQL database data type
These examples show how to retrieve data from an SQL database data type.

In the first example, you get all the data items from a data type named Node where
the value of the Location field is New York and the value of the TypeID field is
012345.

Then, you print the data item fields and values to the policy log using the Log and
CurrentContext functions.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";Filter = "Location = ’New York’ AND TypeID = 012345";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByFilter("Node", "Location = ’New York’ AND TypeID = 012345", False);
Log(CurrentContext());

In the second example, you get all the data items from a data type named Node
where the value of the IPAddress field equals the value of the Node field in an
incoming event. As above, you print the fields and values in the data items to the
policy log.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "IPAddress = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

Make sure that you understand the filter syntax used in the sample code. When
using the value of a variable inside an SQL filter string, the value must be
encapsulated in single quotation marks. This is because Netcool/Impact processes
the filter string in two stages. During the first stage, it evaluates the variable.
During the second stage, it concatenates the filter string and sends it to the data
source for processing.

A shorter version of this example is as follows:

Chapter 6. Handling data 105

MyNodes = GetByFilter("Node", "Location = ’" + @Node + "’", False);
Log(CurrentContext());

Example of retrieving data from an LDAP data type
These examples show how to retrieve data from an LDAP data type.

In the first example, you get any data items from a data type named User where
the value of the cn (common name) field is Brian Huang. Then, you print the data
item fields and values to the policy log using the Log and CurrentContext
functions.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "User";
Filter = "(cn=Brian Huang)";
CountOnly = False;

MyUsers = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyUsers = GetByFilter("User", "(cn=Brian Huang)", False);
Log(CurrentContext());

In the second example, you get all data items from a data type named Node where
the value of the Location field is New York or New Jersey. As above, you print the
fields and values in the data items to the policy log.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "(|(Location=NewYork)(Location=New Jersey))";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByFilter("Node", "(|(Location=New York)(Location=New Jersey))", False);
Log(CurrentContext());

Example of looking up data from a Smallworld DSA Mediator
data type
The following example shows how to look up data from a Smallworld DSA
Mediator data type.

Smallworld is a network inventory manager developed by GE Network Solutions.
Netcool/Impact provides a Mediator DSA and a set of predefined data types that
allow you to read network data from the Smallworld NIS.

In this example, you get all the data items from the SWNetworkElement data type
where the value of ne_name is DSX1 PNL-01 (ORP). Then, you print the data item
fields and values to the policy log using the Log and CurrentContext functions.

106 Netcool/Impact: Solutions Guide

// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "SWNetworkElement";
Filter = "ne_name = ’DSX1 PNL-01 (ORP)’";
CountOnly = False;

MyElements = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyElements = GetByFilter("SWNetworkElement", \
"ne_name = ’NSX1 PNL-01 (ORP)’", False);
Log(CurrentContext());

Retrieving data by key
Retrieving data by key means that you are getting data items from a data type
where you already know the value one or more key fields.

When you retrieve data items by key, you are saying, "Give me a certain number
of data items in this type, where the key fields equal these values." Because key
fields typically designate a unique data item, the number of data items returned is
typically one.

Keys
A key is a special field in a data type that uniquely identifies a data item.

You specify key fields when you create a data type. The most common way to use
the key field is to use it to identify a key field in the underlying data source. For
more information about data type keys, see “Data type keys” on page 18.

Key expressions
The key expression is a value or array of values that key fields in the data item
must equal in order to be returned.

The following key expressions are supported:

Single key expressions
A single key expression is an integer, float, or string that specifies the value
that the key field in a data item must match in order to be retrieved.

Multiple key expressions
A multiple key expression is an array of values that the key fields in a data
item must match in order to be retrieved. For more information, see
“Multiple key expressions.”

Multiple key expressions
A multiple key expression is an array of values that the key fields in a data item
must match in order to be retrieved.

Netcool/Impact determines if the key field values match by comparing each value
in the array with the corresponding key field on a one-by-one basis. For example,
if you have a data type with two key fields named Key_01 and Key_02, and you
use a key expression of {"KEY_12345", "KEY_93832"}, the function compares

Chapter 6. Handling data 107

KEY_12345 with the value of Key_01 and KEY_93832 with the value of Key_02. If both
fields match the specified values, the function returns the data item. If only one
field or no fields match, the data item is not returned.

Retrieving data by key in a policy
To retrieve data by key, you call the GetByKey function and pass the name of the
data type and the filter string.

The function returns an array of data items that match the conditions in the filter.
If you do not specify a return variable, GetByKey assigns the array to the built-in
variable DataItems.

Example of returning data from a data type using a single key
expression
In this example, you retrieve a data item from a data type called Node where the
value of the key field is ID-00001.

Then, you print the data item fields and values to the policy log using the Log and
CurrentContext functions.
// Call GetByKey and pass the name of the data type
// and the key expression.

DataType = "Node";
Key = "ID-00001";
MaxNum = 1;

MyNodes = GetByKey(DataType, Key, MaxNum);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByKey("Node", "ID-00001", 1);
Log(CurrentContext());

Example of returning data by key using a multiple key
expression
In this example, you retrieve a data item from a data type called Customer where
the values of its key fields are R12345 and D98776.

You print the fields and values in the data items to the policy log.
// Call GetByKey and pass the name of the data type.
// the key expression.

Type = "Customer";
Key = {"R12345", "D98776"};
MaxNum = 1;

MyCustomers = GetByKey(Type, Key, MaxNum);
// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyCustomers = GetByKey("Customer", {"R12345", "D98776"}, 1);
Log(CurrentContext());

108 Netcool/Impact: Solutions Guide

Retrieving data by link
Retrieving data by link means that you are getting data items from data types that
are linked to one or more data items that you have previously retrieved.

When you retrieve data items by link, you are saying: "Give me data items in these
data types that are linked to these data items that I already have." The data items
that you already have are called the source data items. The data items that you
want to retrieve are known as the targets.

Links overview
Links are an element of the data model that defines relationships between data
items and between data types.

They can save time during the development of policies because you can define a
data relationship once and then reuse it several times when you need to find data
related to other data in a policy. Links are an optional part of a data model.
Dynamic links and static links are supported.

Retrieving data by link in a policy
To retrieve data items by link, you must first retrieve source data items using the
GetByFilter or GetByKey functions.

Then, you call GetByLinks and pass an array of target data types and the sources.
The function returns an array of data items in the target data types that are linked
to the source data items. Optionally, you can specify a filter that defines a subset of
target data items to return. You can also specify the maximum number of returned
data items.

Example of retrieving data by link
These examples show how to retrieve data by link.

In the first example, you call GetByFilter and retrieve a data item from the Node
data type whose Hostname value matches the Node field in an incoming event. Then
you call GetByLinks to retrieve all the data items in the Customers data type that
are linked to the Node. In this example, you print the fields and values in the data
items to the policy log before exiting.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Call GetByLinks and pass the target data type,
// the maximum number of data items to retrieve and
// the source data item.

DataTypes = {"Customer"};
Filter = "";
MaxNum = "10000";
DataItems = MyNodes;

MyCustomers = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

Chapter 6. Handling data 109

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is:
MyNodes = GetByFilter("Node", "Hostname = ’" + @Node + "’", False");
MyCustomers = GetByLinks({"Customer"}, "", 10000, MyNodes);
Log(CurrentContext());

In the second example, you use a link filter to specify a subset of data items in the
target data type to return. As above, you call GetByFilter and retrieve a data item
from the Node data type whose Hostname value matches the Node field in an
incoming event. Then you call GetByLinks to retrieve all the data items in the
Customers data type whose Location is New York that are linked to the Node. You
then print the fields and values in the data items to the policy log before exiting.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Call GetByLinks and pass the target data type,
// the maximum number of data items to retrieve and
// the source data item.

DataTypes = {"Customer"};
Filter = "Location = ’New York’";
MaxNum = "10000";
DataItems = MyNodes;

MyCustomers = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is:
MyNodes = GetByFilter("Node", "Hostname = ’" + @Node + "’", False");
MyCustomers = GetByLinks({"Customer"}, "Location = ’New York’", 10000, MyNodes);
Log(CurrentContext());

Adding data
Use this procedure to add a data item to a data type.

Procedure
1. Create a context using the NewObject function.

The following example shows how to create a context named MyNode.
MyNode = NewObject();

2. Populate the member variables in the context with data that corresponds to the
values you want to set in the new data item.
The name of each member variable must be exactly as it appears in the data
type definition, as in the following example:

110 Netcool/Impact: Solutions Guide

MyNode.Name = "Achilles";
MyNode.IPAddress = "192.168.1.1";
MyNode.Location = "London";

3. Add the data item.
You can add the data item to the data type by calling the AddDataItem function
and passing the name of the data type and the context as runtime parameters.
The following example shows how to add the data item to a data type.
AddDataItem("Node", MyNode);

Example of adding a data item to a data type
In this example, the data type is named User.

The User data type contains the following fields: Name, Location, and ID.
// Create new context.

MyUser = NewObject();

// Populate the member variables in the context.

MyUser.ID = "00001";
MyUSer.Name = "Jennifer Mehta";
MyUser.Location = "New York";

// Call AddDataItem and pass the name of the data type
// and the context.

DataType = "User";

AddDataItem(DataType, MyUser);

A shorter version of this example would be as follows:
MyUser=NewObject();
MyUser.ID = "00001";
MyUser.Name = "Jennifer Mehta";
MyUser.Location = "New York";
AddDataItem("User", MyUser);

Updating data
You can update single data items, and multiple data items.

To update single a data item, you must first retrieve the data from the data type
using GetByFilter, GetByKey or GetByLinks. Then you can update the data item
fields by changing the values of the corresponding field variables.

When you change the value of the field variables, the values in the underlying
data source are updated in real time. This means that every time you set a new
field value, Netcool/Impact requests an update at the data source level.

To update multiple data items in a data type, you call the BatchUpdate function
and pass the name of the data type, a filter string that specifies which data items
to update, and an update expression. Netcool/Impact updates all the matching
data items with the specified values.

The update expression uses the same syntax as the SET clause in the UPDATE
statement supported by the underlying data source. This clause consists of a
comma-separated list of the fields and values to be updated.

Chapter 6. Handling data 111

Updating multiple data items is only supported for SQL database data types.

Example of updating single data items
In this example, you call GetByFilter and retrieve a data item from a data type
called Node.

Then you change the value of the corresponding field variables.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "Location = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);
MyNode = MyNodes[0];

// Update the values of the field variables in MyNode
// Updates are made in real time in the data source

MyNode.Name = "Host_01";
MyNode.ID = "00001";

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByFilter("Node", "Location = ’" + @Node + "’", False);
MyNodes[0].Name = "Host_01";
MyNodes[0].ID = "00001";
Log(CurrentContext());

Example of updating multiple data items
In this example, you update all the data items in the Customer data type whose
Location is New York.

The update changes the values of the Location and Node fields. Then, you retrieve
the same data items using GetByFilter to verify the update. Before exiting, you
print the data item field values to the policy log.
// Call BatchUpdate and pass the name of the data type,
// the filter string and an update expression

DataType = "Customer";
Filter = "Location = ’New York’";
UpdateExpression = "Location = ’London’, Node = ’Host_02’";

BatchUpdate(DataType, Filter, UpdateExpression);

// Call GetByFilter and pass the name of the data type
// and a filter string

DataType = "Customer";
Filter = "Location = ’London’";
CountOnly = False;

MyCustomers = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

112 Netcool/Impact: Solutions Guide

A shorter version of this example is as follows:
BatchUpdate("Customer", "Location = ’New York’", "Location = ’London’,
Node = ’Host_02’");
MyCustomers = GetByFilter("Customer", "Location = ’London’", False);
Log(CurrentContext());

Deleting data
You can delete single data items, or multiple data items.

Before you can delete a single data item from a data type, you must first retrieve it
from the data source. You can retrieve the data item using the GetByFilter,
GetByKey or GetByLinks functions. After you have retrieved the data item, you can
call the DeleteDataItem function and pass the data item as a runtime parameter.

To delete multiple data items, you call the BatchDelete function and pass it the
name of the data type, and either a filter or the data items you want to delete.
When you delete data items by filter, you are saying: "Delete all data items in this
type, where certain fields contain these values."

The filter is a text string that sets out the conditions that a data item must match in
order for it to be deleted. The syntax for the filter is that of an SQL WHERE clause
that provides a set of comparisons that must be true in order for a data item to be
returned. This syntax specified by the underlying data source. When
Netcool/Impact goes to the data source to delete the data items, it passes this filter
directly to the data source for processing.

Deleting data items by filter is only supported for SQL database data types.

You can also delete data items by passing them directly to the BatchDelete
function as an array.

Example of deleting single data items
In this example, you delete a data item from a data type named User where the
value of the Name field is John Rodriguez.

Because the data type (in this case) only contains one matching data item, you can
reference it as MyUsers[0].
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "User";
Filter = "Name = ’John Rodriguez’";
CountOnly = False;

MyUsers = GetByFilter(DataType, Filter, CountOnly);
MyUser = MyUsers[0];

// Call DeleteDataItem and pass the data item.

DeleteDataItem(MyUser);

A shorter version of this example is as follows:
MyUsers = GetByFilter("User", "Name = ’John Rodriguez’", False);
DeleteDataItem(MyUsers[0]);

Chapter 6. Handling data 113

Example of deleting data items by filter
In this example, you delete all the data items in a data type named Node, where the
value of Location is New York.
// Call BatchDelete and pass the name of the data type
// and a filter string that specifies which data items to delete

DataType = "Node";
Filter = "Location = ’New York’";
DataItems = NULL;

BatchDelete(DataType, Filter, DataItems);

A shorter version of this example is as follows:
BatchDelete("Node", "Location = ’New York’", NULL);

Example of deleting data items by item
The following example shows how to delete multiple data items by passing them
directly to BatchDelete.

In this example, you delete all the data items in a data type named Customer,
where the value of Location is London.
// Call GetByFilter and pass the name of the data type
// and a filter string

DataType = "Customer";
Filter = "Location = ’New York’";
CountOnly = False

MyCustomers = GetByFilter(DataType, Filter, CountOnly);

// Call BatchDelete and pass the array
// returned by GetByFilter

BatchUpdate(DataType, NULL, MyCustomers);

A shorter version of this example is as follows:
MyCustomers = GetByFilter("Customer", "Location = ’London’", False);
BatchDelete("Customers", NULL, MyCustomers);

Calling database functions
You can call functions that are defined in the underlying data source of an SQL
database data type.

These functions allow you to obtain such useful data as the number of rows in the
database that match a specified filter. To call a database function, you call
CallDBFunction and pass the name of the data type, a filter string, and the function
expression. CallDBFunction then returns the results of the function.

CallDBFunction uses the same SQL filter syntax as GetByFilter and BatchDelete.
Complete syntax and additional examples for SQL filters are provided in the Policy
Reference Guide.

The following example shows how to call the database COUNT function within a
policy. In this example, you count the number of data items in the Node data type,
where the value of the Location field is New York. Then, you print the number of
items counted to the policy log.

114 Netcool/Impact: Solutions Guide

// Call CallDBFunction and pass the name of the data type,
// a filter string and the function expression.

DataType = "Node";
Filter = "Location = ’New York’";
Function = "COUNT()";

NumItems = CallDBFunction(DataType, Filter, Function);

// Print the number of counted items to the policy log.

Log(NumItems);

A shorter version of this example is as follows:
NumItems = CallDBFunction("Node", "Location = ’New York’", "COUNT()");
Log(NumItems);

Chapter 6. Handling data 115

116 Netcool/Impact: Solutions Guide

Chapter 7. Handling hibernations

Hibernations are policies that have been temporarily put to sleep. While a policy is
asleep, it is stored internally at its current state and all processing is paused until it
is woken by the hibernating policy activator service or by another policy. IPL and
JavaScript languages support hibernation.

Hibernations overview
The Hibernation data type is a system data type that stores hibernating policies.

You do not typically create or modify Hibernation data items using the Tivoli
Integrated Portal GUI. However, you can use the GUI to delete stored hibernations
in the case that an error condition occurs and the hibernations are not woken by
the hibernation policy activator or another policy.

An action key is a string that uniquely identifies a hibernation. When you
hibernate a policy, you must specify a unique action key.

The hibernation timeout value is the number of seconds that a policy hibernates
before it can be woken by the hibernating policy activator. The hibernation timeout
value does not affect the time at which the hibernation can be woken by another
policy.

Hibernations are designed to be used in X events in Y time solutions. This type of
solution monitors an event source for a certain number of same events to occur
within a time frame, it takes the designated event management action (for
example, notifying an administrator of a repeating event condition).

You can put a policy into hibernation. You can also activate a hibernating policy or
remove a hibernating policy from the hibernation data type. Use the
RemoveHibernation function to remove a policy from the hibernation data type and
to remove it from the hibernation queue.

Hibernating a policy
To hibernate a policy, you call the Hibernate function, and pass an action key and
the number of seconds for it to hibernate.

The action key can be any unique string that you want to use to identify the
policy. Typically, you obtain this string by performing any combination of the
following tasks:
v Use the value of the Identifier field in an incoming ObjectServer event. The

ObjectServer generates a unique Identifier value for each event.
v Use the Random function to generate a random value.
v Use the GetDate function to generate a value that is based on the current system

time.

Examples of hibernating a policy
The following examples show how to hibernate a policy and work with IPL and
JavaScript languages.

© Copyright IBM Corp. 2006, 2016 117

In this example, the action key is the value of the Identifier field in an incoming
ObjectServer event. This policy hibernates for 60 seconds before it is woken by the
hibernating policy activator.
// Call Hibernate and pass an action key and the timeout
// value for the hibernation.

ActionKey = EventContainer.Identifier;
Reason = null;
Timeout = 60;

Hibernate(ActionKey, Reason, Timeout);

A shorter version of this policy is as follows.
Hibernate(EventContainer.Identifier, null, 60);

In this example, the action key is a combination of the current system time and a
random value. This policy hibernates for 2 minutes before it is woken by the
hibernating policy activator.
// Call Hibernate and pass an action key and the timeout
// value for the hibernation.

ActionKey = GetDate() + "_" + Random(9999);
Reason = null;
Timeout = 120;

Hibernate(ActionKey, Reason, Timeout);

A shorter version of this policy is as follows.
Hibernate(GetDate() + Random(9999), null, 120);

Retrieving hibernations
Retrieving hibernations is the way that you get data items from the Hibernation
data type.

You must retrieve a hibernation before you can wake it from within a policy or
remove it.

You can retrieve hibernations in two ways:
v Action key search
v Filter

Retrieving hibernations by action key search
You can use the GetHibernatingPolicies function to retrieve hibernations using a
lexicographical search of action key values.

About this task

GetHibernatingPolicies returns an array of Hibernation data items whose action
keys fall within the specified start and end action keys.

The following example shows how to retrieve hibernations using an action key
search. This search returns all the Hibernation data items whose action keys fall
between ActionKeyAAA and ActionKeyZZZ. The example also prints the contents of
the policy context to the action tree log.

118 Netcool/Impact: Solutions Guide

// Call GetHibernatingPolicies and pass the start action key
// and end action key values.

StartActionKey = "ActionKeyAAA";
EndActionKey = "ActionKeyZZZ";
MaxNum = 10000;

MyHibers = GetHibernatingPolicies(StartActionKey, EndActionKey, MaxNum);

Log(CurrentContext());

A shorter version of this example is as follows.
MyHibers = GetHibernatingPolicies("ActionKeyAAA", "ActionKeyZZZ", 10000);
Log(CurrentContext());

Retrieving hibernations by filter
You can use the GetByFilter function to retrieve hibernations using a filter.

About this task

GetByFilter returns an array of Hibernation data items whose action keys match
the specified filter string. The filter is an SQL filter as defined in “Retrieving data
by filter” on page 101.

The following example shows how to retrieve hibernations using GetByFilter. In
this example, you retrieve the Hibernation data item whose action key is 76486467.
Then, you print the contents of the current policy context to the policy log.
// Call GetByFilter and pass the name of the data type
// and a filter string.

DataType = "Hibernation";
Filter = "ActionKey = ’76486467’";
CountOnly = false;

MyHibers = GetByFilter(DataType, Filter, CountOnly);

Log(CurrentContext());

A shorter version of this example is as follows.
MyHibers = GetByFilter("Hibernation", "ActionKey = ’76486467’, false);
Log(CurrentContext());

Waking a hibernation
There are two ways that you can wake a hibernation.

To wake a hibernation, you perform the following tasks:
v Retrieve the hibernation using GetHibernatingPolicies or GetByFilter
v Call ActivateHibernation

You must also run the RemoveHibernation function to remove the policy from the
hibernation queue and to free up memory resources.

Retrieving the hibernation
The first step in waking a hibernation is to retrieve it from the Hibernation data
type using GetHibernatingPolicies or GetByFilter.

Chapter 7. Handling hibernations 119

About this task

This step is described in the previous section of this guide.

Calling ActivateHibernation
After you retrieve the hibernation, you can call the ActivateHibernation function
and pass the data item as a runtime parameter.

Example
The following example shows how to wake a hibernation.

In this example, you wake a hibernation policy whose action key value is
ActionKeyABC.
// Call GetHibernatingPolicies and pass the start action key
// and end action key values.

StartActionKey = "ActionKeyAAA";
EndActionKey = "ActionKeyZZZ";
MaxNum = 10000;

MyHibers = GetHibernatingPolicies(StartActionKey, EndActionKey, MaxNum);
MyHiber = MyHibers[0];

// Call ActivateHibernation and pass the Hibernation data item as
// a runtime parameter.

ActivateHibernation(MyHiber);

Removing hibernations
Use the RemoveHibernation function to remove a policy from the hibernation data
type and to remove it from the hibernation queue.

To remove a hibernation from the internal data repository, you call the
RemoveHibernation function and pass the action key of the hibernation as a
runtime parameter.

The following example shows how to remove a hibernation. In this example, the
action key for the hibernation is ActionKeyABC.
RemoveHibernation("ActionKeyABC");

120 Netcool/Impact: Solutions Guide

Chapter 8. Sending email

Netcool/Impact allows you to send email from within a policy.

Sending email overview
You can use the feature of sending emails from within a policy to send email
notification to administrators and users when a certain event or combination of
events occur.

Netcool/Impact does not provide a built-in mail server. Before you can send email,
you must make sure that an SMTP server is available in your environment. The
Netcool/Impact email sender service must also be running before a policy can
successfully send email.

Sending an email
To send email you call the SendEmail function and pass information as runtime
parameters.

About this task

To send email you call the SendEmail function and pass the following information
as runtime parameters:

Procedure
v The email address of the recipient
v The subject line text for the email
v The body content of the email
v The name of the email sender

Results

The following example shows how to send an email. In this example, you send the
email to the address srodriguez@example.com.
// Call SendEmail and pass the address, subject and message text
// as runtime parameters

Address = "srodriguez@example.com";
Subject = "Netcool/Impact Notification";
Message = EventContainer.Node + " has reported the following error condition: "
+ EventContainer.Summary;
Sender = "impact";
ExecuteOnQueue = false;

SendEmail(null, Address, Subject, Message, Sender, ExecuteOnQueue);

© Copyright IBM Corp. 2006, 2016 121

122 Netcool/Impact: Solutions Guide

Chapter 9. Setting up instant messaging

Instant Messaging (IM) is a network service that allows two participants to
communicate through text in real time. The most widely used Instant Messaging
(IM) services are ICQ, AOL Instant Messenger (AIM), Yahoo! Messenger and
Microsoft Messenger. You can send and receive instant messages from within an
Impact policy.

Netcool/Impact IM
Netcool/Impact IM is a feature that you can use to send and receive instant
messages from within a policy.

Using this feature, Netcool/Impact can monitor an IM account on any of the most
widely used services for incoming messages and perform operations when specific
messages are received. Netcool/Impact can also send instant messages to any other
IM account. You can use this feature to send an instant message to notify
administrators, operators, and other users when certain events occur in your
environment.

Netcool/Impact IM uses Jabber to send and receive instant messages. Jabber is a
set of protocols and technologies that provide the means for two software entities
to exchange streaming data over a network. For more information, see the Jabber
Web site at http://www.jabber.org.

Netcool/Impact IM components
Netcool/Impact has two types of services that work together with your policies to
provide IM functionality.

The Jabber reader service listens for incoming instant messages and then starts a
specified policy when a new message is received. The Jabber service sends
messages to other IM accounts.

Netcool/Impact requires access to a Jabber server in order to send and receive
instant messages. A list of public Jabber servers is available from the Jabber Web
site at http://www.jabber.org/user/publicservers.php.

Netcool/Impact IM process
The Netcool/Impact IM process has two phases, message listening and message
sending.

Message listening
During the message listening phase, the Jabber reader service listens for new
messages from one or more IM accounts.

When a new message is received, the Jabber reader creates a new EventContainer
and populates it with the contents of the incoming message. Then, the Jabber
reader starts the policy specified in its configuration settings and passes it the
EventContainer. Netcool/Impact then processes the policy.

© Copyright IBM Corp. 2006, 2016 123

Message sending
Message sending is the phase during which Netcool/Impact sends new messages
through the Jabber service. Message sending occurs during the execution of a
policy when Netcool/Impact encounters a call to the SendInstantMessage function.
When Netcool/Impact processes a call to SendInstantMessage, it passes the
message content, recipient and other information to the Jabber service. The Jabber
service then assembles the message and sends it to a Jabber server where it is
routed to the specified recipient.

Setting up Netcool/Impact IM
Before you can send and receive instant messages using a policy, you must set up
the Jabber service and the Jabber reader service as described in the User Interface
Guide.

After you have set up these services, you can start writing instant messaging
policies using the information in “Writing instant messaging policies.”

Writing instant messaging policies
You use instant messages in a Netcool/Impact policy to send messages and handle
incoming messages

Handling incoming messages
When the Jabber reader receives an incoming message, it starts the policy that is
specified in the Jabber reader service configuration and passes the contents of the
message to the policy using the EventContainer variable.

About this task

The policy can then handle the incoming message in the same way it handles
information that is passed in an incoming event.

When the Jabber reader receives an incoming message, it populates the following
fields in the EventContainer variable: From and Body. The From field contains the
user name of the account from which the message was sent. Body contains the
contents of the message. You can access the contents of these fields using either the
dot notation or the @ notation.

Sending messages
You send instant messages from within a policy using the SendInstantMessage
function.

About this task

This function requires you to specify the recipient and the body content of the
message. You can also specify a subject, a chat room ID, and whether to send the
message directly or put it on the message queue for processing by the command
execution manager service. For a complete description of this function, see the
Policy Reference Guide.

Example
The following example shows how to send and receive instant messages using
Netcool/Impact IM.

124 Netcool/Impact: Solutions Guide

In this example, the Jabber reader service calls the policy whenever an incoming
message is received. The policy then confirms receipt of the message and performs
a different set of actions, depending on whether the message sender is
NetcoolAdmin or NetcoolOps.
// Call SendInstantMessage and pass the name of the recipient and the content
// of the message as message parameters
To = @From // Recipient is sender of the original message
TextMessage = "Message receipt confirmed.";
SendInstantMessage(To, NULL, NULL, TextMessage, False);
If (@From == "NetcoolAdmin") {

Log("Message received from user NetcoolAdmin.");
Log("Message contents: " + @Body);

If (@From == "NetcoolOps") {
Log("Message received from user NetcoolOps.");
Log("Message contents: " + @Body);

} Else {
Log("Message received from unrecognized user.");
Log("Message contents: " + @Body);

}

Chapter 9. Setting up instant messaging 125

126 Netcool/Impact: Solutions Guide

Chapter 10. Executing external commands

External command execution is the process of running external commands, scripts,
and applications from within a policy.

External command execution overview
You can use the JRExec server or the command and response feature to run
external commands.

The JRExec server is a runnable component of Netcool/Impact that you can use to
run external commands on the system where the Netcool/Impact server is located.
Command and response is a more advanced feature that you can use to run
interactive and non-interactive programs on both local and remote systems.

You can run any type of external command that can be started from a command
line. Including operating system commands, shell scripts, and many other types of
applications.

Managing the JRExec server
You use the JRexec server to run external commands, scripts, and applications from
within a policy.

Overview of the JRExec server
The JRExec server is a runnable server component of Netcool/Impact that you use
to run external commands, scripts, and applications from within a policy, on the
same system where Netcool/Impact is installed.

The JRExec server is automatically installed when you install Netcool/Impact. On
Windows systems, you must also manually add the JRExec server as a Windows
service. You run the JRExec server either using the JRExec server script or through
the services administration tools, depending on the operating system. The server is
configured through a property file.

You use the JRExecAction function to run external commands from within a policy.
For more information about the JRExecAction function, see the Policy Reference
Guide.

Starting the JRExec server
Use this procedure to start the JRExec server.

Procedure
v On UNIX systems you use the JRExec Server startup script, nci_jrexec, located

in the $IMPACT_HOME/bin directory.
Run this command in the terminal:
./nci_jrexec

v On Windows systems you start the JRExec server service, in the Services
management console.

© Copyright IBM Corp. 2006, 2016 127

Right-click Netcool JRExec Server in the Services window that opens, and select
Start.

Stopping the JRExec server
Use this procedure to stop the the JRExec server.

Procedure
v On Windows systems you stop the JRExec server service, in the Services

management console.
Right-click Netcool JRExec Server in the Services window that opens, and select
Stop.

v On UNIX systems you must manually terminate the process.
Two processes are associated with the JRExec Server: the nci_jrexec process, and
a JAVA process that was started by the nci_jrexec process.
1. Obtain their IDs using these commands:

– ps -eaf | grep nci_jrexec

This command returns the PID of the nci_jrexec process.
– ps -eaf | grep java

Apart from the Impact Server, and the GUI Server process ID, this
command should return this process:
501 16053 1 1 13:58 pts/2
00:00:02 /home/netcool_usr/IBM/tivoli/tipv2/java/bin/java
-Dibm.tivoli.impact.propertiesDir=/home/netcool_usr/IBM/tivoli/impact/etc
-Dbase.directory=/home/netcool_usr/IBM/tivoli/impact
-Dnetcool.productname=impact
-classpath /home/netcool_usr/IBM/tivoli/impact/lib/nciJmxClient.jar:
/home/netcool_usr/IBM/tivoli/tipv2/lib/ext/log4j-1.2.15.jar
com.micromuse.response.client.RemoteJRExecServerImpl

This is only an example and the PID, and the path of the process. They
will be different on your system.

2. Kill both processes using this command:
kill -9 pid

where pid is one of the two process IDs associated with the JRExec Server.

The JRExec server configuration properties
The JRExec server properties file, jrexecserver.props, is located in the
$IMPACT_HOME/etc directory.

The file may contain the following properties:

impact.jrexecserver.port

To change the port number used by the JRExec server. Default is 1345. If
you change this property, you must also update the value of the
impact.jrexec.port property in the <ServerName>_server.props file, where
<ServerName> is the name of the Impact Server instance.

impact.jrexecserver.logfile
To enable logging for the JRExec server. Set its value to the path and
filename of the target JRExec server log file. For example,
impact.jrexecserver.logfile=/opt/IBM/tivoli/impact/logs/
jrexecserver.log.

128 Netcool/Impact: Solutions Guide

JRExec server logging
To enable logging for the JRExec server, add the impact.jrexecserver.logfile
property to the JRExec Server properties file.
1. Create a properties file called jrexecserver-log4j.properties in the

$NCHOME/impact/etc directory.
2. Define the following properties in the properties file:

log4j.rootCategory=INFO
log4j.appender.JREXEC=org.apache.log4j.RollingFileAppender
log4j.appender.JREXEC.threshold=DEBUG
log4j.appender.JREXEC.layout=org.apache.log4j.PatternLayout
log4j.appender.JREXEC.layout.ConversionPattern=%d{DATE} %-5p [%c{1}] %m%n
log4j.appender.JREXEC.append=true
log4j.appender.JREXEC.file=<$NCHOME>/impact/log/nci_jrexec.log
log4j.appender.JREXEC.bufferedIO=false
log4j.appender.JREXEC.maxBackupIndex=3
log4j.appender.JREXEC.maxFileSize=10MB

Ensure that you use the full path for the <$NCHOME> value.
3. You also must set DEBUG as the default priority for all micromuse and IBM

loggers in the same file:
log4j.category.com.micromuse=DEBUG,JREXEC
log4j.additivity.com.ibm.tivoli=false
log4j.additivity.com.micromuse=false

4. Create a log file that is called nci_jrexec.log in the $NCHOME/impact/logs
directory.

Running commands using the JRExec server
To run a command using the JRExec server, you call the JRExecAction function and
pass the name of the command and any command-line arguments as runtime
parameters.

You can also pass a value that specifies whether you want the JRExec server to
wait for the command to be completed before executing any other commands, or
to continue processing without waiting.

The following example shows how to run an external command using the JRExec
server. In this example, you send a page to an administrator using a paging
application named pageit that is installed in the /opt/pager/bin directory on the
system. The pageit application takes the phone number of the person paged and
the return contact number as command-line arguments. In this application, the
JRExec server waits for the application to finish before continuing to process any
other commands.
// Call JRExecAction and pass the command string and
// other parameters

Command = "/opt/pager/bin/pageit";
Args = {"2125551212", "2126353131"};
ExecuteOnQueue = False;
Timeout = 60;

JRExecAction(Command, Args, ExecuteOnQueue, Timeout);

Using CommandResponse
Command and response is an advanced feature that lets you run interactive and
non-interactive programs on both local and remote systems.

Chapter 10. Executing external commands 129

You can invoke this feature within a policy using the CommandResponse function.
For more information about the syntax of the function, see CommandResponse in the
Policy Reference Guide.

130 Netcool/Impact: Solutions Guide

Chapter 11. Handling strings and arrays

Read the following information about handling strings and arrays in a policy.

Handling strings
You cab use the Netcool/Impact policy to manipulate strings in various ways.

You can perform the following tasks with strings:
v Concatenate strings
v Find the length of a string
v Split a string into substrings
v Extract a substring from another string
v Replace a substring in a string
v Strip a substring from a string
v Trim white space from a string
v Change the case of a string
v Encrypt and decrypt strings

Concatenating strings
To concatenate strings, you use the addition operator (+).

About this task

You can concatenate two strings or multiple strings at the same time. You can also
concatenate a string with a numeric value.

The following example shows how to concatenate strings.
String1 = "This";
String2 = "is a test";
String3 = String1 + " " + String2;

Log(String3);

String4 = "The value of X is" + 5;

Log(String4);

When you run this example, it prints the following messages to the policy log:
This is a test
The value of X is 5

Finding the length of a string
You can use the Length function to find the length of a string.

About this task

The Length function returns the number of characters is any text string.

The following example shows how to use the Length function.

© Copyright IBM Corp. 2006, 2016 131

NumChars = Length("This is a test.");
Log(NumChars);

When you run this example, it prints the following message to the policy log:
15

Splitting a string into substrings
You can use the Split function to split a string into substrings.

About this task

The Split function takes a string and a set of delimiter characters as runtime
parameters. It returns an array in which each element is a substring.

The following example shows how to use the Split function.
MyString = "One, Two, Three, Four.";
Delimiters = ",.";

MyArray = Split(MyString, Delimiters);

Count = Length(MyArray);

While (Count > 0) {
Index = Count - 1;
Log(MyArray[Index]);
Count = Count - 1;
}

When you run this example, it prints the following message to the policy log:
Four
Three
Two
One

Extracting a substring from another string
You can use the word position or regular expression matching to extract a
substring from another string.

Extracting a substring using the word position
To use the word position to extract a substring, call the Extract function, and pass
the string and the word position of the substring.

The following example shows how to extract a string in this way.
MyString = "This is a test.";
MySubstring = Extract(MyString, 2);
Log(MySubstring);

When you run this example, it prints the following message to the policy log:
is

Extracting a substring using regular expression matching
You can use regular expression matching to retrieve a single substring or all
substrings from a string.

To extract a single substring, you use the RExtract function. The RExtract function
takes a string and a regular expressions pattern as runtime parameters. It returns
the first matching substring that it finds in the string.

132 Netcool/Impact: Solutions Guide

To extract all matching substrings, you use the RExtractAll function. As with
RExtract, The RExtractAll function takes a string and a regular expressions
pattern as runtime parameters. It returns an array that contains all the matching
substrings.

Replacing a substring in a string
You can use the Replace function to replace a substring in a string.

About this task

The Replace function takes the string, the substring to replace and its replacement
as runtime parameters. The function returns the string after it creates the
replacement.

The following example shows how to replace a substring.
MyString = "This is a test.";
Substring1 = "is a";
Substring2 = "is not a";

MyString = Replace(MyString, Substring1, Substring2);

Log(MyString);

When you run this example, it prints the following message to the policy log:
This is not a test.

Stripping a substring from a string
You can use the Strip function to strip a substring from a string.

About this task

The Strip function takes the string and the substring you want to strip as runtime
parameters. It returns the string after the substring is removed.

The following example shows how to strip a substring from a string.
MyString = "This is not a test.";
Substring = " not";

MyString = Strip(MyString, Substring);

Log(MyString);

When you run this example, it prints the following message to the policy log:
This is a test.

Trimming white space from a string
You can use the Trim function to trim leading and trailing white space from a
string.

About this task

The Trim function takes the string as a runtime parameter and returns it without
any leading or trailing white space.

The following example shows how to trim the white space from a string.

Chapter 11. Handling strings and arrays 133

MyString = " This is a test. ";
MyString = Trim(MyString);
Log(MyString);

When you run this example, it prints the following message to the policy log:
This is a test.

Changing the case of a string
You can use the ToLower function to change the case of a string. You can also use
the ToUpper function to change the case of a string to all uppercase.

Example

The following example shows how to change a string to lowercase.
Log(ToLower("THIS IS A TEST.");

When you run this example, it prints the following message to the policy log:
this is a test.

The following example shows how to change a string to uppercase.
Log(ToUpper("this is a test.");

When you run this example, it prints the following message to the policy log:
THIS IS A TEST.

Encrypting and decrypting strings
The policy language provides a feature that you can use to encrypt and decrypt
strings.

About this task

This feature is useful if you want to handle password data within a
Netcool/Impact policy.

You can use the Encrypt function to encrypt a string. This function takes the string
as a runtime parameter and returns an encrypted version.

The following example shows how to encrypt a string:
MyString = Encrypt("password");

You can decrypt a string that you have previously encrypted using the Decrypt
function. This function takes an encrypted string as a runtime parameter and
returns the plaintext version.

The following example shows how to decrypt a string.
MyString = Decrypt("AB953E4925B39218F390AD2E9242E81A");

Handling arrays
You can use the Netcool/Impact policy language to find the length of an array and
to find distinct values in an array.

Finding the length of an array
You can use the Length function to find the number of elements in an array.

134 Netcool/Impact: Solutions Guide

About this task

The Length function takes the array as a runtime parameter and returns its number
of elements.

The following example shows how to find the number of elements in an array in
IPL:
Elements = Length({"One", "Two", "Three"});
Log(Elements);

The following example shows how to find the number of elements in an array in
JavaScript:
Elements = Length(["One", "Two", "Three"];
Log(Elements);

When you run the example in either language, it prints the following message to
the policy log:
3

Finding the distinct values in an array
You can use the Distinct function to find the distinct values in an array.

About this task

The Distinct function takes the array as a runtime parameter and returns another
array that consists only of the unique, or non-duplicate, elements.

The following example shows how to find the distinct values in an array:
MyArray = {"One", "One", "Two", "Three", "Three", "Four"};
MyArray = Distinct(MyArray};
Log(MyArray);

When you run this example, it prints the following message to the policy log:
{One, Two, Three}

Chapter 11. Handling strings and arrays 135

136 Netcool/Impact: Solutions Guide

Chapter 12. Event enrichment tutorial

The goal of this tutorial is to develop an event enrichment solution to enhance the
value of an existing Netcool/Impact installation.

This solution automates common tasks performed manually by the network
operators and helps to integrate related business data with alerts in the
ObjectServer.

Tutorial overview
This tutorial uses a sample environment that provides the background for
understanding various event enrichment concepts and tasks.

The environment is a network operations center for a large enterprise where the
company has installed and configured Netcool/OMNIbus and is currently using it
to manage devices on its network. The sample environment is a scaled down
representation of what you might actually find in a real world operations center. It
contains only the network elements and business data needed for this tutorial.

This tutorial leads you through the following steps:
v Understanding the Netcool/Impact installation
v Understanding the business data
v Analyzing the workflow in the environment
v Creating a project
v Setting up a data model
v Setting up services
v Writing an event enrichment policy
v Configuring the OMNIbus event reader to run the policy
v Running the complete solution

Understanding the Netcool/Impact installation
The first step in this tutorial is to understand the current Netcool installation.

Generally, before you start developing any Netcool solution, you must find out
which products in the Netcool suite you installed and which devices, systems, or
applications are being monitored in the environment.

The Netcool installation in the sample environment consists of Netcool/OMNIbus
and a collection of probes that monitor devices on the network. This installation
uses two instances of an ObjectServer database named NCOMS that is set up in a
backup/failover configuration. These ObjectServers are located on host systems
named NCO_HOST_01 and NCO_HOST_02, and run on the default port of 4100.

The probes in this installation monitor various network devices. The details of the
devices are not important in this tutorial, but each probe sends the basic set of
alert fields to the ObjectServer database, including the Node, Summary, Severity,
AlertKey, and Identifier fields.

© Copyright IBM Corp. 2006, 2016 137

Understanding the business data
The next step in this tutorial is to understand the location and structure of the
business data in your environment.

In the sample environment, the company uses instances of the Oracle database to
store network inventory information, customer service information, and general
organizational information about the business.

The information that you want to use is stored in two databases named ORA_01 and
ORA_02. ORA_01 is a network inventory database that stores information about the
devices in the network, including their technical specification, facility locations,
and rack numbers. ORA_01 is located on a system named ORA_HOST_01. ORA_02 is a
database that contains information about the various departments in the business.
ORA_02 is located on a system named ORA_HOST_02. They both run on port 1521

Analyzing the workflow
After you find the location and structure of the business data, the next step is to
analyze the current event management workflow in your environment.

The tutorial work environment is a network operations center. In this center, a
number of operators are on duty at all times. They sit in an open work area and
each one has access to a console that displays a Netcool/OMNIbus event list. On
large projector screens on one wall of the operation center are large map
visualizations that provide geographical views into the current network status.

As alerts flow to the ObjectServer from the various Netcool probes and monitors
that are installed in the environment, they are displayed in the event lists available
to the operators. Depending on the severity of the alerts, the operators manually
perform a set of tasks using the event list tools, third-party applications, and
typical office tools like cell phones and email.

For the sake of this tutorial, we assume that, among other tasks, the operators
perform the following actions for each high severity alert. The operators:
v Manually acknowledge the alert using the event list.
v Use an in-house database tool to find information about the device causing the

alert. This tool runs a query against the network inventory database and returns
technical specifications, the location, and other information.

v Use another in-house tool to look up the business department being served by
the device that caused the alert.

v If the business department is part of a mission critical business function, they
increase the severity of the alert and update it in the ObjectServer database.

The operators might perform other actions, like looking up the administrators on
call at the facility where the device is located and contacting them by phone or
pager. After the problem that caused the alert is addressed, the operators might
also record the resolution in a problem log and delete the alert from the
ObjectServer. For this tutorial, however, only use the workflow tasks listed.

Creating the project
After you finish analyzing the workflow, the next step is to create a project in the
Tivoli Integrated Portal GUI.

138 Netcool/Impact: Solutions Guide

About this task

You can use this project to store the data model, services, and policies that are used
in this solution. The name of this project is NCI_TUT_01.

Procedure
1. Open the Tivoli Integrated Portal in a web browser and log in.
2. In the navigation tree, expand System Configuration > Event Automation click

one of the links, for example Data Model, to view the project and cluster
selection lists on the Data Model tab.

3. Select a cluster from the Cluster list. From the Project list, select Global.
4. Click the New Project icon on the toolbar to open the New Project window.
5. Use the New Project window to configure your new project.
6. In the Project Name field, type NCI_TUT_01.
7. Click OK then click Close.

Setting up the data model
After you create a project for this tutorial, the next step is to set up a
Netcool/Impact data model.

This data model consists of the event sources, data sources, and data types that are
required by the event enrichment solution. It also consists of a dynamic link that is
used to define the relationship between the data types.

You use the Tivoli Integrated Portal GUI to perform all the tasks in this step.

To set up the data model, you perform the following tasks:
v Create the event source
v Create the data sources
v Create the data types
v Create the dynamic link

Creating the event source
The first task in setting up the data model is to create the event source. As you
learned when you investigated the details of the Netcool installation, the example
environment has one event source, an ObjectServer named NCOMS.

About this task

Because you want to tap into the alerts that are stored in this ObjectServer, you
must create an event source that represents it in Netcool/Impact.

An event source is a special type of data source that Netcool/Impact can use to
represent a physical source of event data in the environment. Since your source of
event data is an ObjectServer database, you must create an ObjectServer data
source and configure it with the connection information you discovered when you
investigated the details of the Netcool installation.

To create the event source:

Chapter 12. Event enrichment tutorial 139

Procedure
1. In the navigation tree, expand System Configuration > Event Automation

click Data Model to open the Data Model tab.
2. Select a cluster from the Cluster list. From the Project list, select

NCI_TUT_01.
3. Click the New Data Source icon and select ObjectServer from the list. The

New Data Source opens.
4. Type NCOMS in the Data Source Name field.
5. Type the name and password of an ObjectServer user in the Username and

Password fields.
6. Type NCO_HOST_01 in the Primary Host Name field.
7. Type 4100 in the Primary Port field.
8. Click Test Connection to test the ObjectServer connection.
9. Type NCO_HOST_02 in the Backup Host Name field.

10. Type 4100 in the Backup Port field.
11. Click Test Connection to test the ObjectServer connection.
12. Click OK.

Creating the data sources
The next task in setting up the data model is to create the data sources.

About this task

As you learned when you discovered the location and structure of the business
data in your environment, the data you want to use in this solution is in two
Oracle databases named ORA_01 and ORA_02. Since you want to access these
databases, you must create a data source that corresponds to each one.

To create the data sources:

Procedure
1. In the navigation tree, expand System Configuration > Event Automation,

click Data Model to open the Data Model tab.
2. Click the New Data Source icon and select Oracle from the list. The New Data

Source window opens.
3. Type ORACLE_01 in the Data Source Name field.
4. Type an Oracle user name and password in the Username and Password fields.
5. Type ORA_HOST_01 in the Primary Host Name field.
6. Type 1521 in the Primary Port field.
7. Type ORA_01 in the SID field.
8. Click Test Connection to test the ObjectServer connection.
9. Click OK.

Results

Repeat these steps to create another data source that corresponds to the ORA_02
database. Name this data source ORACLE_02.

Creating the data types
The next task in setting up the data model is to create the data types.

140 Netcool/Impact: Solutions Guide

About this task

As you learned when you discovered the location and structure of the business
data in your environment, the data that you want to use is contained in two tables.

The first table is called Device and is in the ORA_01 database. This table contains
information about each device on the network. Columns in this table include
Hostname, DeviceID, HardwareID, Facility, and RackNumber.

The second table is called Department and is in the ORA_02 database. This table
contains information about each functional department in the business. Columns in
this table include DeptName, DeptID, and Location.

Since you want to access the data in both of these tables, you must create a data
type for each. Name these data types Device and Department.

To create the data types:

Procedure
1. In the navigation tree, expand System Configuration > Event Automation

click Data Model to open the Data Model tab.
2. Select ORACLE_01 from the data sources list.
3. Click the New Data Type icon.

A new Data Type Editor tab opens.
4. Type Device in the Data Type Name field.
5. Select ORACLE_01 from the Data Source Name drop down menu.
6. Ensure that the Enabled check box is selected. It is selected by default.
7. Scroll down the Data Type Editor tab so that the Table Description area is

visible.
8. Select Device from the Base Table list.
9. Click Refresh.

Netcool/Impact queries the Oracle database and populates the Table
Description browser with the names of each column in the Device table.

10. Specify that the DeviceID field is the key field for the data type by selecting
the Key option in the DeviceID row.

11. Select Hostname from the Display Name Field list.
12. Click Save in the Data Type Editor tab.
13. Click Close in the Data Type Editor tab.

Results

Repeat these steps to create another data type that corresponds to the Department
table in the ORA_02 database. Name this data type Department.

Creating a dynamic link
The next step is to create a dynamic link between the Device and Department data
types.

About this task

One property of the business data that you are using in this solution is that there is
a relationship between devices in the environment and departments in the

Chapter 12. Event enrichment tutorial 141

business. All the devices that are located in a certain facility serve the business
departments in the same location. You can make this relationship part of the data
model by creating a dynamic link between the Device and Department data types.
After you create the dynamic link, you can use the the GetByLinks function to
traverse it within a policy.

In this relationship, Device is the source data type and Department is the target
data type. When you create the link between the two data types, you can define it
using the following syntax:
Location = ’%Facility%’

This filter tells Netcool/Impact that Device data items are linked to Department
data items if the value of the Location field in the Department is equal to the value
of the Facility field in the Device.

To create the dynamic link:

Procedure
1. In the navigation tree, expand System Configuration > Event Automation,

click Data Model to open the Data Model tab.
2. Click the name of the Device data type.

A new Data Type Editor tab opens in the Main Work panel of the GUI. This
editor displays configuration information for the Device data type.

3. Select the Dynamic Links tab in the editor.
The Links From This Data Type area opens in the editor.

4. Click the New Link By Filter button to open the Link By Filter window.
5. Select Department from the Target Data Type list.
6. In the Filter ... Field, type the filter string that defines the relationship between

the Device and Department list. As noted in the description of this task above,
the filter string is Location = ’%Facility%’. This means that you want Device
data items to be linked to Department data items if the Location field in the
Department is the same as the Facility field in the Device.

7. Click OK.
8. Click the Save button in the Data Type Editor tab.
9. Click the Close button in the Data Type Editor tab.

Reviewing the data model
After you create the dynamic links, you can review the data model using the Tivoli
Integrated Portal GUI to verify that you have performed all the tasks correctly.

About this task

You can review the data model by opening the Data Source and Data Type task
panes in the Navigation panel, and by making sure that the event source, data
sources, and data types that you created are visible.

Setting up services
The next step in this tutorial is to set up the OMNIbus event reader required by
the solution.

142 Netcool/Impact: Solutions Guide

Creating the event reader
The OMNIbus event reader for this solution must check the NCOMS ObjectServer
every 3 seconds and retrieve any new events.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation,

click Services to open the Services tab.
2. Click the Create New Service icon and select OMNIbusEvent Reader from the

list.
3. Type TUT_READER_01 in the Service Name field.
4. Select NCOMS from the Data Sourcelist.
5. Type 3000 in the Polling Interval field.
6. Select the Startup option. This option specifies whether the service starts

automatically when you run Netcool/Impact.
7. Click OK.

Reviewing the services
After you create the event reader, you can use the Tivoli Integrated Portal GUI to
verify that you completed all the tasks correctly.

About this task

To review the service that you created, click the Services task pane in the
Navigation panel, and make sure that the TUT_READER_01 OMNIbus event reader is
visible. You can also check to make sure that the event reader displays in the
Service Status panel.

Writing the policy
After you set up the OMNIbus event reader service, the next step is to write the
policy for the solution.

This policy is named EnrichEvent and it automatically performs the tasks that you
discovered when you analyzed the workflow in the environment.

You can use the EnrichEvent policy to complete the following tasks:
v Look up information about the device that is causing the alert.
v Look up the business departments that are served by the device.
v If one of the business departments is part of a mission critical business function,

the policy increases the severity of the alert to critical.

This section assumes that you already know how to create, edit, and save a policy
using the policy editor tools in the Tivoli Integrated Portal GUI. For more
information about these tools, see the User Interface Guide.

Looking up device information
The first task that you want the policy to perform is to look up device information
that is related to the alert in the network inventory database.

Chapter 12. Event enrichment tutorial 143

About this task

Specifically, you want the policy to retrieve technical specifications for the device
that is causing the alert, and information about the facility and the rack number
where the device is located.

To do this, the policy must perform a SELECT at the database level on the table that
contains the device data and return those rows that are related to the incoming
alert. Viewed from the data model perspective, the policy must get data items from
the Device data type where the value of the Hostname field is the same as the value
of the Node field in the alert.

To retrieve the data items, you type the following code into the Netcool/Impact
policy editor tab:
DataType = "Device";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyDevices = GetByFilter(DataType, Filter, CountOnly);
MyDevice = MyDevices[0];

If (Length(MyDevices) < 1) { Log("No matching device found."); }
If (Length(MyDevices) > 1) { Log("More than one matching device found."); }

Here, GetByFilter is retrieving data items from the Device data type where the
value of the Hostname field is equal to the value of the Node field in the incoming
alert. The data items are stored in an array named MyDevices.

Although GetByFilter is able to return more than one data item in the array, you
only expect the array to contain one data item in this situation, as each device in
the database has a unique Hostname. The first element of the MyDevices array is
assigned to the MyDevice variable so that MyDevice can be used as shorthand later
in the policy.

Because you want to retrieve only one data item from the data type, the policy also
prints error messages to the policy log if GetByFilter retrieves less than or more
than one.

Looking up business departments
The next task that you want the policy to perform is to look up the business
departments that are served by the device that caused the alert.

About this task

When you set up the data model for this solution, you created a dynamic link.
This link defined the relationship between the devices in the environment and
departments in the business. To look up the business departments that are served
by the device, the policy must take the data item that it previous retrieved from
the Device data type and traverse the links between it and the Department data
type.

To retrieve the Department data items that are linked to the Device, type the
following text into the policy editor below the code you entered previously:
DataTypes = {"Department"};
Filter = NULL;
MaxNum = 10000;

144 Netcool/Impact: Solutions Guide

MyDepts = GetByLinks(DataTypes, Filter, MaxNum, MyDevices);

If (Length(MyDepts) < 1) { Log("No linked departments found."); }

Here, GetByLinks retrieves up to 10,000 Department data items that are linked to
data items in the MyDevices array. Since you are certain that the business has less
than 10,000 departments, you can use a large value such as this one to make sure
that all Department data items are returned.

The returned data items are stored in the MyDepts array. Because you want at least
one data item from the data type, the policy also prints an error message to the
policy log if GetByLinks does not return any.

Increasing the alert severity
The final task that you want the policy to perform is to increase the severity of the
alert.

About this task

For example, if the department that it affects has a mission critical function in the
business. For the purposes of this tutorial, the departments in the business whose
function is mission critical are the data center and transaction processing units.

To perform this task, the policy must iterate through each of the Department data
items that are retrieved in the previous step. For each Department, it must test the
value of the Name field against the names of the two departments in the business
that have mission critical functions. If the Department name is that of one of the
two departments, the policy must increase the severity of the alert to Critical.
Count = Length(MyDepts);

While (Count > 0) {

Index = Count - 1;
MyDept = MyDepts[Index];

If (MyDept.Name == "Data Center" || MyDept.Name == "Transaction Processing") {
@Severity = 5;

}

Count = Count - 1;

}

Here, you use a While loop to iterate through the elements in the MyDepts array.
MyDepts is the array of Department data items that were returned previously in the
policy by a call the GetByLinks.

Before the While loop begins, you set the value of the Count variable to the number
of elements in the MyDepts array. Each time the loop runs, it tests the value of
Count. If Count is greater than zero, the statements inside the loop are executed. If
Count is less than or equal to zero, the statements are not executed. Because Count
is decremented by one each time the loop is performed, the While loop runs once
for each data item in MyDepts.

A variable named Index is used to refer the current element in the array. The value
of Index is the value of Count minus one, as Netcool/Impact arrays are zero-based
structures whose first element is counted as zero instead of one.

Chapter 12. Event enrichment tutorial 145

Inside the loop, the policy uses an If statement to test the name of the current
Department in the array against the name of the two mission-critical business
departments. If the name of the current Department matches the mission-critical
departments, the policy sets the value of the Severity field in the alert to 5, which
signifies a critical severity.

Reviewing the policy
After you finish writing the policy, you can review it for accuracy and
completeness.

About this task

The following example shows the entire text of this policy.
// Look up device information

DataType = "Device";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyDevices = GetByFilter(DataType, Filter, CountOnly);
MyDevice = MyDevices[0];

If (Length(MyDevices) < 1) { Log("No matching device found."); }

// Look up business departments

DataTypes = {"Department"};
Filter = NULL;
MaxNum = 10000;

MyDepts = GetByLinks(DataTypes, Filter, MaxNum, MyDevices);

If (Length(MyDepts) < 1) { Log("No linked departments found."); }

// If department is mission-critical, update severity of alert

Count = Length(MyDepts);

While (Count > 0) {

Index = Count - 1;
MyDept = MyDepts[Index];

If (MyDept.Name == "Data Center" || MyDept.Name == "Transaction Processing") {
@Severity = 5;

}

Count = Count - 1;

}

Running the solution
The final step in this tutorial is to run the event enrichment solution.

Before you begin

Before you run the solution, you must configure the TUT_READER_01 OMNIbus
event reader service so that it triggers the EnrichEvent policy. To configure
TUT_READER_01:

146 Netcool/Impact: Solutions Guide

1. Open Netcool/Impact and select System Configuration > Event Automation >
Services

2. Select the the TUT_READER_01 service and click Edit.
3. Click the Event Mapping tab.
4. To create a mapping, click the New Mapping button.
5. If you want to trigger the EnrichEvent policy for all events, leave the Filter

Expression field empty. If you want to trigger the EnrichEvent policy for
specific events, enter the values for these events.

6. Select EnrichEvent in the Policy to Run field.
7. Click the Active check box.
8. To save the configuration, click Ok.
9. To save the changes to the TUT_READER_01 service, click the save icon.

Procedure

To start the solution, you simply start the OMNIbus event reader service.
The event reader then begins to monitor the ObjectServer and retrieves any new
events that appear. When a new event appears, the event reader brings it back into
Netcool/Impact, where it is processed by running the EnrichEvent policy.

Chapter 12. Event enrichment tutorial 147

148 Netcool/Impact: Solutions Guide

Chapter 13. Configuring the Impact policy PasstoTBSM

In this scenario, you configure the Impact policy PasstoTBSM. You will create and
configure an Impact policy, and create a TBSM service model to receive the data.
You will create a custom portlet to view the data. When you have created the
custom portlet, you will create a freeform page to display the data.

Expected Result

When you have completed this scenario, you will have a freeform custom page
displaying data in TBSM, gathered from an Impact policy.

Overview
Use the PasstoTBSM function to send event information from Netcool/Impact to
TBSM.

Netcool/Impact uses the function PasstoTBSM to send event information to TBSM.
In an Impact policy, you can add the PassToTBSM function to the policy. When you
activate the policy using a Netcool/Impact service, the event information is sent to
TBSM.

In TBSM, you can manually configure an Incoming status rule to look for events
coming from Netcool/Impact. The Data Feed list menu shows the Netcool/Impact
service used to run the policy containing the PasstoTBSM function. To show the
fields available for the selected Netcool/Impact service, you must manually
customize the field names in Customize Fields window to match the fields in the
policy.

You can also use the PasstoTBSM feature to transfer event information from a
remote Netcool/Impact cluster to TBSM. To do this some additional configuration
is required.

Configuration
You can use the PassToTBSM function on both local and remote installations. The
syntax for PassToTBSM is the same as it is for a policy running on a TBSM server.
For a remote installation the following tasks must be completed:
v The TBSM server must share a clustered name server with the remote Impact

Server to view the Netcool/Impact services in the Data Feed list menu in the
Edit Incoming status rule window.

v In TBSM an administration user configures
impact.sla.remoteimpactcluster=<cluster name of remote impact server> in
etc/TBSM_sla.props on the TBSM server.

v In Netcool/Impact, an administrator user exports the project, For
ImpactMigration from TBSM and imports it into the remote version of
Netcool/Impact. Netcool/Impact needs the For ImpactMigration project to
access the TBSM data sources, and data types.

To call the PassToTBSM function from a remote Impact Server, the remote
Netcool/Impactcluster needs the data type ImpactEvents. The ImpactEvents data
type points to the ImpactEvents table in the DB2 database that TBSM uses. This

© Copyright IBM Corp. 2006, 2016 149

data type uses a data source called TBSMDatabase. The TBSMDatabase data
source and the ImpactEvents data type belong to the project called
ForImpactMigration in the TBSM server.

You can export this project from the TBSM server and import it into the remote
Impact Server to provide the Impact Server with the data sources and data types
required from TBSM.

Exporting and Importing the ForImpactMigration project
To call the PassToTBSM function from a remote Impact server, the remote Impact
server needs to import the ForImpactMigration project and its contents from
TBSM.

Before you begin

The ForImpactMigration project displays in the Projects list in the version of
Impact that is contained within TBSM. The ForImpactMigration project has the
data sources and data types necessary for remote Impact server to send events
using PassToTBSM. To send events to TBSM from a remote Impact server, an
administrator user needs to export the ForImpactMigration project from the TBSM
server and import it into their Impact server.

About this task

Before you complete the export and import to the Impact server. Use the Unlock
all button on the Global projects toolbar to unlock any locked items and check the
etc/<instance_name>_versioncontrol.locks file for locked items before completing
the export and import steps.

Procedure
1. In the TBSM server instance, run the nci export command.

<INSTALL_DIR>/tbsm/bin/nci_export TBSM --project ForImpactMigration
<exported dir>

2. Copy the exported directory to the remote Impact server or to a location where
the Impact server can access the directory.

3. In the Impact server instance, run the nci import command.
<INSTALL_DIR>/impact/bin/nci_import NCI <exported dir> to import the
ForImpactMigration into the remote Impact server.

Creating a policy
A policy example to use for PassToTBSM using the Web Services wizard to create
the policy

About this task

The role of this policy is to monitor a web service that provides weather data on
temperature and humidity about a particular city. In this example, create the policy
using the Web service option in the policy Wizard.

Procedure
1. In the Policies tab, select the arrow next to the New Policy icon. Select Use

Wizard > Web Services to open the Web Service Invoke-Introduction window.

150 Netcool/Impact: Solutions Guide

2. In the Web Service Invoke-Introduction window, type in the policy name in
the Policy Name field, for example Weather and click Next to continue.

3. In the Web Service Invoke-WSDL file and client stub window, in the URL or
Path to WSDL field, enter the URL or a path for the target WSDL file. For
example http://wsf.cdyne.com/WeatherWS/Weather.asmx?wsdl.
In instances where the GUI server is installed separately from the Impact
Server, the file path for the WSDL file refers to the Impact Server file system,
not the GUI server file system. If you enter a URL for the WSDL file, that URL
must be accessible to the Impact Server host and the GUI server host.

4. In the Client Stub area, select Provide a package name for the new client
stub.

5. Enter a name for the package, for example getWeatherInfoPkg. Click Next.
6. In the Web Service Invoke-Web Service Name, Port and Method window, the

general web service information is prepopulated for the following items; Web
Service Weather, Web Service Port Type WeatherSoap, and Web Service
Method. Select the option you want from the list, for example,
GetCityWeatherByZIP. Click Next.

7. In the Web Service Invocation- Web Service Method parameters window, enter
the parameters required by the target Web service method. For example, enter
the name the zip code of the city you want to get weather information for.
Click Next. When the wizard is complete it creates a policy which gets
weather information from the selected web site for the specified city.

8. In the Web Service Invoke-Web Service EndPoint window, you can optionally
edit the URL or Path to WSDL by selecting the edit check box. To enable web
service security, select the Enable web service security service check box.
Select one of the following authentication types:
v HTTP user name authentication

v SOAP message user name authentication

Add the User name and Password. Click Next.

9. The Web Service Invoke-Summary and Finish window is displayed. It shows
details relating to the policy. Click Finish to create the policy. When the
wizard is completed, it generates the policy content. You can run the policy in
the usual way and verify the results in the policy logger.

10. To extract the data from the policy and send it to TBSM. You must manually
edit the policy and add the following lines to the policy. PassToTBSM(ec);

Important: This policy uses a NewEvent object to pass the data. If you create
an object to send the event data to PassToTBSM, use NewEvent, not NewObject.
If your policy is driven by an event reader or listener, the EventContainer
object can be sent directly into PassToTBSM. A PolicyActivator service does
not pass any event object to its policy, so you must create a
NewEvent("EventSourceName") including the name of the service which points
to the event source from where events are read and sent. For example,
MyEvent = NewEvent("DefaultPolicyActivator");

An example of the web service policy generated by the web services wizard.
//This policy generated by Impact Wizard.

//This policy is based on wsdl file at
http://wsf.cdyne.com/WeatherWS/Weather.asmx?wsdl

log("Start policy ’getWeather’...");
//Specify package name as defined when compiling WSDL in Impact
WSSetDefaultPKGName(’getWeatherInfoPkg’);

Chapter 13. Configuring the Impact policy PasstoTBSM 151

//Specify parameters
GetCityWeatherByZIPDocument=WSNewObject
("com.cdyne.ws.weatherws.GetCityWeatherByZIPDocument");
_GetCityWeatherByZIP=WSNewSubObject
(GetCityWeatherByZIPDocument,"GetCityWeatherByZIP");

_ZIP = ’27513’;
_GetCityWeatherByZIP[’ZIP’] = _ZIP;

WSParams = {GetCityWeatherByZIPDocument};

//Specify web service name, end point and method
WSService = ’Weather’;
WSEndPoint = ’http://wsf.cdyne.com/WeatherWS/Weather.asmx’;
WSMethod = ’getCityWeatherByZIP’;

log("About to invoke Web Service call GetCityWeatherByZIP");

WSInvokeDLResult = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams);
log("Web Service call GetCityWeatherByZIP return result:
" +WSInvokeDLResult);

//Added for PasstoTBSM

city = WSInvokeDLResult.GetCityWeatherByZIPResponse.
GetCityWeatherByZIPResult.City;
temperature=WSInvokeDLResult.GetCityWeatherByZIPResponse.
GetCityWeatherByZIPResult.Temperature;
humidity=WSInvokeDLResult.GetCityWeatherByZIPResponse.
GetCityWeatherByZIPResult.RelativeHumidity;

ec = NewEvent("WeatherActivator");
// Using a Policy Activator called WeatherActivator

ec.city=city;
ec.temperature=temperature;
ec.humidity=humidity;

log(" City : " + ec.city + " Temp : " + ec.temperature + " Humid :
" + ec.humidity);

PassToTBSM(ec);

Creating a policy activator service
Create the policy activator service to call the policy to get updates and to pass the
updates to TBSM.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Services to open the Services tab.
2. In the Services tab, click the Create New Service icon.
3. From the menu, select a template for the service that you want to create. In this

instance, select Policy Activator.
4. Add the Service Name for example WeatherActivator, the Activation Interval

in seconds, for example 300 and select the policy Weather you created earlier
policy from the Policy list menu.

5. Startup: Automatically when server starts Select the checkbox to automatically
start the service when the server starts. You can also start and stop the service
from the GUI.

6. Service log: Write to file Select the checkbox to write log information to a file.

152 Netcool/Impact: Solutions Guide

7. Click the Save Service icon.
8. Start the service.

Create a new template and rule to collect weather data
In this topic, you create a service structure to organize the weather data by city.
You create a regional service template and an aggregation rule that depends on the
City service template.

About this task

To create the service structure:

Procedure
1. From the Service Navigation pull-down menu, select Templates.
2. Click Create New Template button. The Edit Template tab opens in the

Service Editor.
3. Enter CityWeather in the Template Name field.
4. Enter Weather data by city in the Description field.
5. In the Rules tab after Children, click Create Incoming Status rule button.
6. Select the Based on a Numeric Value radio button and click the OK button.

The Edit Incoming status rule window opens.
7. Type CityTemperature in the Rule Name field.
8. Select WeatherActivator from the Data Feed drop-down list.
9. Click the Customize Fields button. The Customized Fields window opens.

10. Make sure the values for the fields based on the match table below:

Table 26. Default Field Names and Types

Field Name Field Type

EventClass String

EventType String

ResourceName String

SecondaryResourceName String

Summary String

Value1 Float

Value2 Float

Value3 Float

11. Add the following fields:

Table 27. New Custom Fields and Types

Field Name Field Type

city String

temperature Float

humidity Float

12. Click OK.
13. Enter the remaining values for the incoming status rule using the table below

as your guide.

Chapter 13. Configuring the Impact policy PasstoTBSM 153

Table 28. Settings for CityTemperature rule

Entry fields Value

Instance Name city

Expression temperature <

Select the Status checkbox.

Marginal

Bad

80

95

Select the Store data for this rule for TWA checkbox.

14. Click OK. The CityTemperature rule is listed in the Rules tab.
15. You can repeat the same steps to create a CityHumidity incoming status rule

to collect humidity data from WeatherActivator data feed. Select humidity as
the output value and choose values between 0 and 100 for status thresholds.

16. To save the rule, click the Save button in the Edit Template tool bar.

Create the CityHumidity rule for the CityWeather template
In this topic you will create a rule to collect data for the template.

Procedure
1. From the Service Navigation pull-down menu, select Templates.
2. If it is not already open, click the Edit Template 'CityWeather' tab.
3. Click the Incoming Status Rule button to open the Edit Incoming Status Rule

Type window.

4. Select the Based on a Good, Marginal, and Bad Threshold radio button and
click the OK button.
The Create Incoming Status Rule window opens.

5. Type CityHumidity in the Rule Name field.
6. Select weatherActivator from the Data Feed drop-down list.
7. Click the Customize Fields button. The Customized Fields window opens.
8. Make sure the values for the fields based on the match table below:

Table 29. Default Field Names and Types

Field Name Field Type

EventClass String

EventType String

ResourceName String

SecondaryResourceName String

Summary String

Value1 Float

Value2 Float

Value3 Float

Figure 5. Incoming status rule button

154 Netcool/Impact: Solutions Guide

9. Add the following fields:

Table 30. New Custom Fields and Types

Field Name Field Type

City String

Temperature Float

Humidity Float

10. Click OK.
11. Enter the remaining values for the incoming status rule using the table below

as your guide.

Table 31. Settings for CityTemperature rule

Entry fields Value

Instance Name City

Expression Humidity <

Select the Status checkbox.

Marginal

Bad

60

85

Select the Store data for this rule for TWA checkbox.

12. Click the OK button.
13. Click the Save button in Edit Template 'CityWeather' tab.

Note: The rule will not be saved to the TBSM database until you click the
Save button.
The CityHumidity rule displays in the Rules tab.

What to do next

Next: Create the service by hand.

In this topic, you create a service for city weather.

Create a city service
In this topic, you will create a service.

About this task

To create a service called Cary, complete the following steps:

Procedure
1. From the Service Navigation pull down menu, select Services.
2. Click the Create New Service button.

The Edit Service tab opens in the Service Editor.
3. In the Service Name field type Cary.
4. In the Templates tab, click the template CityWeather in the Available

Templates list and click the >> button.

Chapter 13. Configuring the Impact policy PasstoTBSM 155

The CityWeather template moves to the Selected Templates list.
5. Click the Save button in the Edit Service tab toolbar.
6. The Service Navigation portlet displays the new service in the Services tree.
7. In order to have a custom service tree with just the cities containing weather

information, create another service (let's say, Weather) and make Cary a
dependent of it.

8. Create a new tree template CityWeather, adding the Temperature and
Humidity columns for the CityWeather template. Associate the new columns to
@CityTemperature and @CityHumidity, respectively.
For information on creating custom trees, see the Service Configuration Guide >
Custom service trees.

Results

Next: Customize a Service Tree portlet

When you have created the service, you can customize a Service Tree portlet to
only show the City weather information.

Customizing a Service Tree portlet
In this topic, you will be creating a customized Service Tree portlet.

Procedure
1. Click Settings –> Portlets in the navigation pane. A list of all navigation

nodes in the console are displayed, grouped the same way as they are in the
console navigation. The page includes all the portlets you can choose to
customize.

2. Click New. The welcome page of the Create Widget wizard opens. Click Next.
The next page is launched with the title Select a Base Widget.

3. Select the Services portlet. Click Next.
4. On the General page, enter Weather by City in the Name field.
5. Scroll through the thumbnail icon choices for the portlet, and choose

according to the figure below.
6. Choose the Description Image for the new portlet as shown in the figure

below:

7. Select TBSM and click the Add > button to add the new portlet to the TBSM
catalog.

8. Click Next. The Security page is launched.
9. On the Security page, select User from the Selected Roles list.

10. Click Add to view a list of roles that can access this page.
11. Select these roles from the list of Available Roles:

v tbsmReadOnlyUser

156 Netcool/Impact: Solutions Guide

v tbsmAdminUser

v
12. Select User from the Selected Roles drop down list for user access levels. Click

Add.
13. From the list of Available Roles, select tbsmAdminUser, select Privileged User

from the Selected Roles drop down list for user access levels.
14. Click Add.
15. Click Next The Customize section opens.
16. On the General page, enter Weather by City for the portlet title.
17. Click Next. The Context page opens. Select Weather as starting instance.
18. Click Next. The View page opens.
19. In the Tree Template drop-down list, select CityWeather. Keep the defaults for

the other fields.
20. Click Next. The Summary page displays.
21. Click Finish.
22. Verify in Settings –> Portlets that the new portlet is listed.

Results

Next: Adding a custom Services portlet to a freeform page

When you have customized a Service Tree portlet, you can add to a new page.

Adding a custom Services portlet to a freeform page
In this topic, you can add a custom Service Tree to a new freeform page.

Before you begin

To create a custom page, you need administrator privileges in TBSM.

About this task

To create a custom page, complete the following steps:

Procedure
1. Click Settings –> Pages in the navigation pane. A list of all navigation nodes

in the console are displayed, grouped the same way as they are in the console
navigation.

2. Click New Page. A new page is launched with the title Page Settings.
3. Enter Weather Service in the Page name field.
4. In the Page location field, click Location to browse for the location you want

your page. console/Availability/. This value page specifies that the page
will be listed under Availability in the console task list. Keep the defaults for
the other fields.

5. In the Page location field, click Location to browse for where the new page
will be listed in the console task list. Drag the new page into the Availability
folder. This page is for read-only users who will not need to edit services. As
a result, you add the page to the Availability group. The Location field is
updated with console/Availability/. Keep the defaults for the other fields.

6. Click OK.

Chapter 13. Configuring the Impact policy PasstoTBSM 157

7. Select Freeform option under Page Layout.
8. Expand Optional setting to add roles access to this page.
9. Select User from the Selected Roles list.

10. Click Add to view a list of roles that can access this page.
11. Select these roles from the list of Available Roles:

v tbsmReadOnlyUser

v tbsmAdminUser

v
12. Click Add .
13. For tbsmReadOnlyUser, select User from the Access Level drop-down list.
14. For tbsmAdminUser, select Privileged User from the Selected Roles list.
15. Click OK. The Portlet palette displays, which is used to select portlet content.
16. Select the All folder.
17. Use the arrows at the bottom of the Portlet palette to find and select the

Weather by City portlet.
18. Drag the City Weather Tree portlet into the empty space below the Portlet

palette. --> Weather by City

19. Drag a Time Window Analyzer and place it under the Weather by City.
20. In the Time Window Analyzer, click Add Service.
21. Search for Cary, and click on it. You can edit Shared Preferences to make Cary

the default service for the Time Window Analyzer portlet.
22. Click Edit Options > Skin to customize the look of your portlet. The Skin

option controls how the border of the portlet looks.
23. Click Done. The new page will open.

Note: After you click Done, you will not be able to change or arrange your
portlets.

24. Log out and log in as the OSManager1 user to verify that the new user can see
the page.

158 Netcool/Impact: Solutions Guide

Chapter 14. Working with the Netcool/Impact UI data provider

You can use the UI data provider in Netcool/Impact to provide data to UI data
provider compatible clients.

Integration with Netcool/Impact

The UI data provider accesses data from data sources, data types, and policies in
Netcool/Impact.

The console is a component of Jazz for Service Management called IBM Dashboard
Application Services Hub. Jazz for Service Management is bundled with
Netcool/Impact. The IBM Dashboard Application Services Hub is referred to as the
console in the rest of this documentation.

You can use the UI data provider to visualize data from Netcool/Impact in the
console. You can use the console to create your own widgets or you can use one of
the customizable self service dashboards.

Jazz for Service Management

The UI data provider requires Netcool/Impact 6.1.1 or higher. The UI data
provider also requires Jazz for Service Management, which is available for
download from the same page as Netcool/Impact 6.1.1. You use the installer that is
provided with Jazz for Service Management to install it separately.

We recommend that you install Netcool/Impact and Jazz for Service Management
on separate servers. If you do install Netcool/Impact and Jazz for Service
Management on the same server, you must change the default port numbers to
avoid a conflict between the versions of Tivoli Integrated Portal 2.2.x.x used by the
GUI Server and the IBM Dashboard Application Services Hub, referred to as the
console in this documentation. For example, a GUI Server with Tivoli Integrated
Portal installed uses port 16310 as the default port. The console dashboards in Jazz
for Service Management use the same port. In this case, you must change the port
that is used by the console dashboards in Jazz for Service Management, for
example to 18310.

For more information about Jazz for Service Management, see
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/
psc_ic-homepage.html

Getting started with the UI data provider
Before you can use the Netcool/ImpactUI data provider, you must complete the
prerequisites.

Prerequisites

Before you can use the UI data provider, you must ensure that the correct
components are installed.

You must configure the user authorization.

© Copyright IBM Corp. 2006, 2016 159

http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html

Finally, you must create the data source and data types or the policy that you want
to use to provide data to the UI data provider.

Visualizing data in the console

To visualize data in the console, you must complete the following tasks:
1. Create the remote connection between the UI data provider and the console.
2. Create the data model or policy that provides the data from Netcool/Impact.
3. Create a page in the console.
4. Create a widget on the page in the console.

UI data provider components
Before you can use the UI data provider, you must ensure that you install all the
required components.

Required Jazz for Service Management components

Before you can use the UI data provider, you must install the IBM Dashboard
Application Services Hub (the console) component of Jazz for Service Management.

If you want to use the Netcool/Impact self service dashboard (SSD) widgets, you
must install the SSD widgets on the Dashboard Application Services Hub Server.
For more information, see “Installing the Netcool/Impact Self Service Dashboard
widgets” on page 201.

Component overview

The following graphic outlines the components that are required for using the UI
data provider.

160 Netcool/Impact: Solutions Guide

The system landscape is made up of a GUI Server or Impact Server, a secondary
server or a primary server in a clustered environment, and a custom dashboard
server.

Netcool/Impact 6.1.1 is installed on the GUI Server, the primary Impact Server and
the secondary Impact Server. The GUI Server is installed as part of Tivoli
Integrated Portal (TIP) 2.2.x.x.

The custom dashboard server uses the widgets that are created in TIP 3.1 to
connect to the GUI Server. The custom dashboard uses the Registry Services
component that is provided by Jazz for Service Management to connect to a DB2
database. For more information about the Registry Services component, see
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/
psc_ic-homepage.html.

The custom dashboard server runs Tivoli Integrated Portal (TIP) 3.1 in contrast to
the other servers that run Tivoli Integrated Portal (TIP) 2.2.x.x. This is because you
can only create the widgets that facilitate the integration in Tivoli Integrated Portal
(TIP) 3.1.

Configuring user authentication
Before you can use the UI data provider, you must assign one of the following
roles.

Chapter 14. Working with the Netcool/Impact UI data provider 161

http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html

About this task

User authentication is controlled by impactUIDataProviderUser role. This role is
administered in the Tivoli Integrated Portal profile.

Procedure

You must assign one of the following roles to users to enable access to the UI data
provider:
v iscadmins

v impactAdminUser

v impactFullAccessUser

v impactUIDataProviderUser

For more information about this role, see the information about the
impactUIDataProviderUser role in the working with roles section of the User
Interface Guide.

Data types and the UI data provider
To ensure that the data type can send data to the UI data provider, you must
ensure that the following settings exist. Internal and SNMP data types require
additional settings.

When you create a data type, you must consider the following settings:
v For all data types, except the internal data type, you must also select the Key

Field check box for the key field. The key field identifies the uniqueness of the
data that is displayed by the widget in the console.

v You must enable the data type so that it can send data to the UI data provider.
To ensure that the data type can be accessed by the UI data provider, open the
data type editor and select the Access the data through UI data provider:
Enabled check box. After the data model refreshes, the data type is available as
a data provider source. The default refresh rate is 5 minutes. However, this
setting can be changed. For more information about how to change the refresh
rate, see “UI data provider customization” on page 207.

v You must select a display name that does not contain any special characters or
spaces. To select the display name, in the navigation tree, expand System
Configuration > Event Automation and click Data Model to open the Data
Model tab. Expand the data source that the data type belongs to and click the
data type that you want to use. Select the field that you want to use as the
display name from the Display Name Field list.

v If the data type key field value contains quotation marks ("), the console cannot
support the widget that is based on the data type. This means that you cannot
click the row that is based on the key field, use it to send an event to another
widget or to provide hover preview information. You must use a key field that
does not contain quotation marks.

Internal data types

If you use Internal data types, you must select one of the fields that belongs to the
data type from the Display Name Field list in the data type editor. You must not
select KEY. You must select an existing field in your schema definition. The UI
data provider uses the value in this field as the item identifier. You must choose a
unique value for the key field, otherwise the UI data provider overwrites your
chosen key with the most recent value.

162 Netcool/Impact: Solutions Guide

SNMP data types

If you use SNMP data types, you must define a value in the Field Name field in
the data type editor. The UI data provider uses the value from the Field Name
field as the item identifier. If more than one entry for the same value in Field
Name field exists, the UI data provider uses the entry that was created most
recently. If you want the UI data provider to use an item identifier that is unique,
enter a unique value in the Field Name field for the data type.

Integrating chart widgets and the UI data provider
If you use the pie or line chart widgets to visualize data in the console, you must
change the number of items per page from All to a number to ensure that the
console can display the data.

Procedure
1. Open a page in the console or create a new one.
2. Select a widget. To select a widget, click All and drag the widget into the

content area.
3. Configure the widget data. To configure the widget data, click it in the content

area and click the Down arrow icon > Edit. The Select a dataset window is
displayed.

4. Select the dataset that you want to use to provide the data. To search for the
data type, enter the data type name and click the Search button. To display a
list of all the available data types, click the Show All icon.

5. Click Settings. In the Items per page list list, change the number of items per
page from All to a number. For example, change it to 50.

6. Click OK to save the widget.

Names reserved for the UI data provider
The following names are reserved for use by the UI data provider. You cannot use
these names in your policies and databases.

The UI data provider uses the comma (,) and ampersand (&) characters on the UI
and in the URL for policies that use the DirectSQL policy function. You can use AS
instead of ampersand (&) in policies.

The UI data provider uses the UIObjectId field to index key fields. You cannot use
the UIObjectId field in any of your policies.

Netcool/Impact uses the AS UIDPROWNUM field in the query that is used for DB2 and
Oracle databases. You cannot use UIDPROWNUM as a field name for any of the
connected DB2 and Oracle databases.

The topology and tree widgets use the UITreeNodeId field. The UITreeNodeId field
is reserved for use by the UI data provider and it contains the following fields that
are also reserved:
v UITreeNodeId

v UITreeNodeParent

v UITreeNodeStatus

v UITreeNodeLabel

v UITreeNodeType

Chapter 14. Working with the Netcool/Impact UI data provider 163

General steps for integrating the UI data provider and the
console

You can use a variation of the general steps that are listed here to visualize data
from the Netcool/Impact UI data provider in the console.

The exact steps differ depending on whether you use a data type or policy to
provide the data. However, in general, to integrate the UI data provider and the
console, you must complete the following activities:
1. Create the remote connection.
2. Create the information provider.

If you want to visualize data directly from a DB2 table or other data source,
you must set up the data model in Netcool/Impact.
If you want to visualize data directly from a policy in Netcool/Impact, you
must create the policy. For example, if you want to use a policy to mashup data
from two different sources, you must create a policy in Netcool/Impact that
summarizes the data.

3. Create a page and widget in the console.

Setting up the remote connection between the UI data provider
and the console
Before you can visualize data from the UI data provider in the console, you must
configure the remote connection between the UI data provider and the console.

About this task

The connection from Jazz for Service Management (the console) is to the host and
port where the GUI Server with the Tivoli Integrated Portal profile is running. The
default port for the Tivoli Integrated Portal profile is 16311 for HTTPS and 16310 if
you are using a HTTP protocol.

Procedure
1. Open the console.
2. To open the Connections window, click Settings > Connections. The

Connections window lists all the available data providers.
3. To create a new remote provider to represent the Netcool/Impact UI data

provider, click the Create new remote provider icon and complete the
following settings:
a. Select the protocol from the list. For example, HTTPS.
b. Enter the host name. For example, the IP address of the GUI Server.
c. Enter the port number. For example, for HTTPS the default value is 16311.
d. Enter the user name and password that you used when you installed the

Impact Server.
e. Select the data provider that you created. To view all the available data

providers, click Search. After you select the data provider, the Name and
Provider ID fields are automatically populated. If you use multiple servers
in a clustered environment, a connection is displayed for each server. For
example, if you use Netcool/Impact in a cluster with TBSM, a connection is
displayed for both members of the cluster.

4. To create the remote provider connection, click Ok.

164 Netcool/Impact: Solutions Guide

Creating the data model
Before you can integrate the UI data provider and the console, you must create a
data source and data type to provide data.

Before you begin

Before you create a data type, there are a number of specific settings that are
required to facilitate the integration with the UI data provider. For more
information about these settings, see “Data types and the UI data provider” on
page 162.

Procedure
1. Create a data source.
2. Create a data type.

Results

The changes are only visible after the refresh interval. The refresh rate is 5 minutes
by default. For more information about how to change this setting, see “UI data
provider customization” on page 207.

Creating a page in the console
Before you can create a widget to visualize the data from the UI data provider, you
must create a page in the console.

Procedure
1. Open the console.
2. To create a page, click Settings > New Page. Alternatively, you can also select

Getting Started > Build a page on the desktop.
3. Enter the name of the page.
4. Click OK to save the page.

Results

The page is created. You can now create a widget to visualize the data.

Creating a widget on a page in the console
To visualize data from Netcool/Impact on a page in the console, you must create a
widget.

About this task

Before you create a widget, you must create a page in the console. For more
information, see “Creating a page in the console.”

Procedure
1. Open the page that you want to use for this widget in the console.
2. Select a widget. To select a widget, click All and drag the widget into the

content area.
For example, click All, select the table widget, and drag the widget into the
content area.

Chapter 14. Working with the Netcool/Impact UI data provider 165

3. Configure the widget data. To configure the widget data, click it in the content
area and click the Down arrow icon > Edit. The Select a dataset window is
displayed.

4. Select the dataset that you want to use to provide the data. To search for the
data source, data type, or policy that provides the data, enter the data type
name and click the Search button. If you use a data type from Netcool/Impact
to provide data for the widget, you can search for either the data source or data
type name. If you use a policy from Netcool/Impact, you can search for the
policy name or the output parameter name.
If you configured any specific policy-related actions on a policy to be used with
a UI data provider when you create the widget and right-click an action in the
widget the policy-related actions are displayed.
The data type is only displayed after the defined refresh interval. The default is
5 minutes. If you use a data type that you just created, you must wait 5
minutes before the data type displays.

5. If you want to use the line or pie chart widget, you must change the number of
items per page form All to a number. To do so, click Settings. In the Items per
page list list, change the number of items per page from All to a number.

6. To save the new widget, click OK.

Results

You can now use the new widget to visualize the data from the specified data type
in the console.

Accessing data from Netcool/Impact policies
You can use the UI data provider to access data from Netcool/Impact policies.

You must create user output parameters for each policy that you want to use with
the UI data provider.

In addition, if you use an Impact object, an array of Impact objects, the DirectSQL
or the GetByFilter policy function, you need to be aware of certain special
requirements. These special cases are described and, where required, an example is
provided.

If your policy retrieves data from a data base where the key field contains
quotation marks ("), the console cannot support the widget that is based on the
data provided by the policy. This means that you cannot click the row that is based
on the key field, use it to send an event to another widget or to provide hover
preview information. You need to use a key field that does not contain quotation
marks.

Configuring user parameters
To use the UI data provider or OSLC with your Netcool/Impact policies, you must
configure user parameters to make the policy results compatible with the UI data
provider or available as OSLC resources.

166 Netcool/Impact: Solutions Guide

About this task

You can create either policy runtime parameters or policy output parameters.
Policy runtime parameters represent the runtime parameters that you define in
policies. For example, you can use a policy runtime parameter to pass values from
one policy to another in a data mashup.

Policy output parameters represent the parameters that are output by policies. For
example, the UI data provider uses policy output parameters to visualize data
from policies in the console.

Procedure
1. To open the policy user parameter editor in the policy editor toolbar, click the

Configure User Parameters icon.
2. To create a policy output parameter, click New Output Parameter:New. To

create a policy runtime parameter, click New Runtime Parameter:New.
Mandatory fields are denoted by an asterisk (*). You must enter a unique name
in the Name field.

3. Define the custom schemas for the output parameters if required.
If you are using the DirectSQL policy function with OSLC, you must define the
custom schema for it.
If you are using DirectSQL, Impact Object, or Array of Impact Object with
the UI data provider or the chart widget, you must define the custom schema
for these values.
For more information, see “Creating custom schema values for output
parameters” on page 170

4. To save the changes to the parameters and close the window, click OK.

Example

This example demonstrates how to create output parameters for a policy. First, you
define a simple policy, like:
first_name = “Mark”;
zip_code = 12345;
Log(“Hello “ + first_name + “ living at “ + zip_code);

Next, define the output parameters for this policy. In this case, there are two
output parameters. You enter the following information:

Table 32. PolicyDT1 output parameter

Field User entry

Name Enter a unique name. For example,
PolicyDT1.

Policy variable name first_name

Format String

Table 33. PolicyDT2 output parameter

Field User entry

Name Enter a unique name. For example,
PolicyDT2

Policy variable name zip_code

Chapter 14. Working with the Netcool/Impact UI data provider 167

Table 33. PolicyDT2 output parameter (continued)

Field User entry

Format Integer

Accessing Netcool/Impact object variables in a policy
You can use the NewObject function to create Netcool/Impact objects in a policy. If
you want to access these objects from the UI data provider, you must create a
policy output parameter.

Procedure
1. To open the policy user parameter editor, click the Configure User Parameters

icon in the policy editor toolbar. You can create policy user parameters for
runtime and output. Click New to open the Create a New Policy Output
Parameter window as required.

2. Select Impact Object from the Format list.
3. Enter the policy object name in the Policy Variable Name field.

Example

The following example demonstrates how to make an Impact object variable
available to the UI data provider. First, you create the following policy, called
Test_Policy2:
MyObject = NewObject();
MyObject.fname = ’Sam’;
MyObject.age = 25;
MyObject.bmi = 24.5;

Define the output parameters for the policy as follows:

Table 34. PolicyObject1 output parameter

Field User entry

Name Enter a unique name. For example
PolicyObject1.

Policy variable name MyObject

Format Impact Object

Accessing data types output by the GetByFilter function
If you want to access the results from the GetByFilter function, you must create
output parameters for the UI data provider.

Procedure
1. To open the policy user parameter editor, click the Configure User Parameters

icon in the policy editor toolbar. You can create policy user parameters for run
time and output. To open the Create a New Policy Output Parameter window,
click New.

2. Select data type as the format.
3. Enter the name of the data item to which the output of the GetByFilter

function is assigned in the Policy Variable Name field.
4. Enter the name of the data source in the Data Source Name field.
5. Enter the name of the data type in the Data Type Name field.

168 Netcool/Impact: Solutions Guide

Example

This example demonstrates how to make the output from the GetByFilter function
available to the Netcool/Impact UI data provider.

You created a data type that is called ALERTS that belongs to the
defaultobjectserver data source. This data type belongs to Netcool/OMNIbus and
it points to alerts.status. The key field is Identifier. The following four rows of
data are associated with the key field:
v Event1
v Event2
v Event3
v Event4

Create the following policy, called Test_Policy3:
MyAlerts = GetByFilter("ALERTS", "Severity > 0", false);

Define the output parameters for the policy as follows:

Table 35. PolicyData1 output parameter

Field User entry

Name PolicyData1

Policy variable name MyAlerts

Format Datatype

Data source name defaultobjectserver

Data type name ALERTS

Select the output parameter as the dataset for the widget that you are using to
visualize the data.
1. Open the console and open a page.
2. Drag a widget into the content area.
3. To configure the widget data, click it. Click the down arrow icon and click Edit.

The Select a dataset window is displayed.
4. Select PolicyData1 as the data type that belongs to the defaultobjectserver data

source.
5. To ensure that the policy runs when the widget is displayed, select the

executePolicy check box. Click Ok.

Accessing data types output by the DirectSQL function
If you want to access the results from the DirectSQL policy function, you must
create output parameters for the UI data provider.

About this task

The comma (,) and ampersand (&) characters are reserved as special characters for
the user interface and the URL. You cannot use these characters in policies that are
accessed by the DirectSQL policy function. You can use AS instead of ampersand
(&) in policies as required.

For example, consider the following policy:

Chapter 14. Working with the Netcool/Impact UI data provider 169

SELECT "My&Test" AS My_Test FROM test_table

This policy returns the field name My_Test instead of My&Test

Procedure
1. To open the policy user parameter editor, click the Configure User Parameters

icon in the policy editor toolbar. You can create policy user parameters for run
time and output. To open the Create a New Policy Output Parameter window,
click New.

2. Select DirectSQL / UI Provider Datatype as the format.
3. Enter a name for the output parameter.
4. Enter the name of the data item to which the output of the DirectSQL function

is assigned in the Policy Variable Name field.
5. To define the DirectSQL format values, click the Open the schema definition

editor editor icon. For detailed information about how to create custom schema
values, see “Creating custom schema values for output parameters”

Creating custom schema values for output parameters
When you define output parameters that use the DirectSQL, Array of Impact
Object, or Impact Object format in the user output parameters editor, you also
must specify a name and a format for each field that is contained in the
DirectSQL, Array of Impact Object, or Impact Object objects.

About this task

Custom schema definitions are used by Netcool/Impact to visualize data in the
console and to pass values to the UI data provider and OSLC. You create the
custom schemas and select the format that is based on the values for each field
that is contained in the object. For example, you create a policy that contains two
fields in an object:
O1.city="NY"
O1.ZIP=07002

You define the following custom schemas values for this policy:

Table 36. Custom schema values for City

Field Entry

Name City

Format String

Table 37. Custom schema values for ZIP

Field Entry

Name ZIP

Format Integer

If you use the DirectSQL policy function with the UI data provider or OSLC, you
must define a custom schema value for each DirectSQL value that you use.

If you want to use the chart widget to visualize data from an Impact object or an
array of Impact objects with the UI data provider and the console, you define
custom schema values for the fields that are contained in the objects. The custom

170 Netcool/Impact: Solutions Guide

schemas help to create descriptors for columns in the chart during initialization.
However, the custom schemas are not technically required. If you do not define
values for either of these formats, the system later rediscovers each Impact object
when it creates additional fields such as the key field. UIObjectId, or the field for
the tree widget, UITreeNodeId. You do not need to define these values for OSLC.

Procedure
1. In the policy user parameters editor, select DirectSQL, Impact Object, or Array

of Impact Object in the Format field.

2. The system shows the Open the Schema Definition Editor icon

beside
the Schema Definition field. To open the editor, click the icon.

3. You can edit an existing entry or you can create a new one. To define a new
entry, click New. Enter a name and select an appropriate format.
To edit an existing entry, click the Edit icon beside the entry that you want to
edit

4. To mark an entry as a key field, select the check box in the Key Field column.
You do not have to define the key field for Impact objects or an array of Impact
objects. The system uses the UIObjectId as the key field instead.

5. To delete an entry, select the entry and click Delete.

Accessing an array of Impact objects with the UI data provider
Before you can use the UI data provider to access an array of Impact objects, you
must create an output parameter that represents the array of Impact objects.

About this task

Netcool/Impact uses the field UIObjectID to index the key fields. As a result,
UIObjectID is a reserved field name. You must not use UIObjectID as a custom
field in any of your policies.

Procedure
1. To define an output parameter for the array of Impact objects, click the

Configure User Parameters icon in the policy editor toolbar. To open the
Create a New Policy Output Parameter window, click New. Create the output
parameter as outlined in the following table:

Table 38. Output parameter for a policy that contains the Array of Impact Objects array

Field Instructions

Name Enter a name for the output parameter.

Policy Variable Name Enter a name that is identical to the name of
the array of Netcool/Impact objects in the
policy that you want to reference.

Format Select Array of Impact Objects.

2. After you create the output parameter, you define the custom schema values
for the array of Impact objects. For more information, see “Creating custom
schema values for output parameters” on page 170.

3. To display all the fields and values that are associated with the array, use the
following URL:
https://<hostname>:<port>/ibm/tivoli/rest/providers/
Impact_NCICLUSTER /datasources/<datasourceid>/datasets/
<outputparametername>/items?properties=all

Chapter 14. Working with the Netcool/Impact UI data provider 171

where <outputparametername> is the name of the parameter that is defined in
the previous step.

Example

For example, consider the following Netcool/Impact objects:
MyObject1=NewObject();
MyObject1.firstname="first_name";
MyObject1.lastname="last_name";

MyObject2=NewObject();
MyObject2.city="mycity";
MyObject2.state="mystate";

An Impact Policy Language (IPL) policy references the array as follows:
MyArrayOfObjects={MyObject1,MyObject2};

A JavaScript policy references the array as follows:
MyArrayOfObjects=[MyObject1,MyObject2];

To map MyArrayOfObjects to the output parameters, create the output parameter
for the array of objects as follows:

Table 39. Output parameters for MyArrayObj1

Field User entry

Name MyArrayObj1

Policy Variable Name MyArrayOfObjects

Format Array of Impact Object

To map the values that are contained in the array, create the custom schema values
as follows:

Table 40. first_name custom schema values

Field User entry

Name first_name

Format String

Table 41. last_name custom schema values

Field User entry

Name last_name

Format String

Table 42. mycity custom schema values

Field User entry

Name mycity

Format String

Table 43. mystate custom schema values

Field User entry

Name mystate

172 Netcool/Impact: Solutions Guide

Table 43. mystate custom schema values (continued)

Field User entry

Format String

Use the following URL to view the fields and values for MyArrayofObjects:
https://<hostname>:<port>/ibm/tivoli/rest/providers/
Impact_NCICLUSTER /datasources/<datasourceid>/datasets/
MyArrayObj1/items?properties=all

UI data provider and the IBM Dashboard Application Services Hub
To create visualizations and mashups of Netcool/Impact data from sources such as
Netcool/Impact policies and database tables in the IBM Dashboard Application
Services Hub, referred to as the console throughout this section, you can integrate
the Netcool/Impact UI data provider with the console.

Filtering data in the console
You can use the console to filter data based on runtime parameters. This data can
be derived from Netcool/Impact policies or other data types. To filter data in the
console, you configure the widget settings in the console.

About this task

You make these settings in the table widget UI in the console. To make the settings
that are described here, open the table widget UI and click Edit.

Procedure
v To filter data provided by Netcool/Impact policies, you must select the

executePolicy check box to include the executePolicy Boolean parameter in the
policy. The executePolicy parameter ensures that the policy runs when the user
opens the widget. The system then populates the widget with the required data
from the policy.
If you want to enter values for the policy runtime parameters in the console, you
can enter these values under Configure Optional Dataset Parameters. The
system passes the values to the runtime parameters in the policy while the
policy is running.
Attention: The runtime parameters must be already defined in the policy. If the
runtime parameters are not defined in the policy, the system cannot pass the
values for the runtime parameters to the policy. For more information about how
to create policy runtime parameters, see “Configuring user parameters” on page
166.

v To filter data from other sources, such as data derived from a database table,
users can enter values for the filter parameters in the Configure Optional
Dataset Parameters section in the console. Netcool/Impact uses the values that
are entered here to filter the results that are displayed in the console.

Example: filtering data based on a database table

For example, you want to configure a console widget to display the rows from a
database table that contain a value of 192.168.1.119 for the Device field. In the
console under Configure Optional Dataset Parameters, enter 192.168.1.119 in the
Device field. The widget returns only the data that contains this value in the
Device field.

Chapter 14. Working with the Netcool/Impact UI data provider 173

Integrating the tree widget with an Impact object or an array
of Impact objects

Before you can integrate a policy that contains an Impact object or an array of
Impact objects with the tree widget that is available in the console, you must
specify certain fields in the policy and create the required custom schema
definitions.

Procedure
1. If the object is a parent with an indexed ID, add the UITreeNodeId field for the

object. If the object is a child, add the UITreeNodeParent field for the object. If
you do not add these values, the object is not displayed as a tree hierarchy. The
following conditions also apply:
v The first object in the hierarchy cannot be a child, as is the case for all

hierarchies.
v You must specify the parent object before the child.
v A child object cannot use the same ID for itself and its parent.
v The parent ID is an indexed ID and it must start with 0. If you want to skip

the parent ID, you must do so in this order.
v The schema of each object must be the same, as is the case for all objects that

use the tree widget. In other words, an object can use less schema elements
than its parent object but these elements must be defined in the parent object.
A child object cannot use additional schema elements that are not defined in
the parent object.

The UITreeNodeId and UITreeNodeParent fields are not displayed in the console
2. Create a policy output parameter for the Impact object or the array of Impact

objects. To create a policy output parameter, click the Configure User
Parameters icon in the policy editor toolbar. To open the Create a New Policy
Output Parameter window, click New. Create the following entries:

Table 44. User output parameters for Impact object or array of Impact objects

Field Instructions

Name Enter a name for the output parameter.

Policy Variable Name Enter a name that is identical to the name of
the Impact object or the array of Impact
objects that is specified in the policy that
you want to reference.

Format Choose Impact Object or Array of Impact
Objects.

3. Create the custom schema values for the values that you want to display as
columns in the console. You must specify a custom schema value for the Impact
object or the objects that are contained in an array of Impact objects. The
schema values that you define can be displayed as columns in the console. You
only need to specify custom schema values for the values that you want to
display. Values such as UITreeNodeId are displayed as properties unless you
specify them as custom schema values.
To create a custom schema value in the policy editor, select Impact object or
Array of Impact objects in the Format field. To open the editor, click the Open
the Schema Definition Editor icon. Define the custom schema values as
outlined in the following table:

174 Netcool/Impact: Solutions Guide

Table 45. Custom schema values for Impact object or array of Impact objects

Field Instructions

Name Enter the name of the custom schema value.
For example, this could be the name of the
Impact object or the name of one of the
objects in the array of Impact objects.

Format Choose the format of the custom schema
value. For example, if the parameter is a
string, choose String.

Example

The following example demonstrates how to integrate an array of Impact objects
and the tree widget.
1. Create a policy that contains an array of Impact objects and the additional

fields that are required for the tree widget, UITreeNodeId and
UITreeNodeParent.
Log("Array of objects with same fields....");
O1=NewObject();
O1.UITreeNodeId=0;
O1.fname="o1fname";
O1.lname="o1lname";
O1.dob="o1dob";

O2=NewObject();
O2.UITreeNodeId=1;
O2.UITreeNodeParent=0;
O2.fname="o2fname";
O2.lname="o2lname";
O2.dob="o2dob";

O3=NewObject();
O3.UITreeNodeId=2;
O3.UITreeNodeParent=1;
O3.fname="o3fname";
O3.lname="o3lname";
O3.dob="o3odb";

O4=NewObject();
O4.UITreeNodeId=3;
O4.UITreeNodeParent=20;
O4.fname="o4fname";
O4.lname="o4lname";
O4.dob="o4odb";

O5=NewObject();
O5.UITreeNodeId=4;
O5.fname="o5fname";
O5.lname="o5lname";
O5.dob="o5odb";

O6=NewObject();
O6.UITreeNodeParent=4;
O6.fname="o6fname";
O6.lname="o6lname";
O6.dob="o6odb";

O7=NewObject();
O7.UITreeNodeParent=4;
O7.fname="o7fname";
O7.lname="o7lname";

Chapter 14. Working with the Netcool/Impact UI data provider 175

O7.dob="o7odb";

O8=NewObject();
O8.UITreeNodeParent=4;
O8.fname="o8fname";
O8.lname="o8lname";
O8.dob="o8odb";

O9=NewObject();
O9.fname="o9fname";
O9.lname="o9lname";
O9.dob="o9odb";

O10=NewObject();
O10.fname="NJ";
O10.lname="Bayonne";
O10.dob="April 1st 2011";

O11=NewObject();
O11.UITreeNodeParent=11;
O11.fname="o11fname";
O11.lname="o11lname";
O11.dob="o11odb";

O12=NewObject();
O12.UITreeNodeId=11;
O12.UITreeNodeParent=0;
O12.fname="o12fname";
O12.lname="o12lname";
O12.dob="o12odb";

Oa=NewObject();
Oa.UITreeNodeId=12;
Oa.UITreeNodeParent=2;
Oa.fname="oafname";
Oa.lname="oalname";
Oa.dob="oaodb";

Ob=NewObject();
Ob.UITreeNodeId=13;
Ob.UITreeNodeParent=12;
Ob.fname="obfname";
Ob.lname="oblname";
Ob.dob="obodb";

Oc=NewObject();
Oc.UITreeNodeId=14;
Oc.UITreeNodeParent=14;
Oc.fname="ocfname";
Oc.lname="oclname";
Oc.dob="ocodb";

Oe=NewObject();
Oe.UITreeNodeParent=14;
Oe.fname="oefname";
Oe.lname="oelname";
Oe.dob="obedb";

Os={O1,O2,O3,O4,O5,O6,O7,O8,O9,O10,O12,O11,Oa,Ob,Oc,Oe};
log("os " + Os);

2. In the policy editor, create the following user output parameter:

Table 46. ArrayofNewObject user output parameter

Field User input

Name ArrayofNewObject

176 Netcool/Impact: Solutions Guide

Table 46. ArrayofNewObject user output parameter (continued)

Field User input

Policy Variable Name Os

Format Array of Impact Objects

3. In the policy editor, create the following custom schema value definitions for
the array of Impact objects:

Table 47. fname custom schema definition

Field User input

Name fname

Format String

Table 48. lname custom schema definition

Field User input

Name lname

Format String

Integrating data from a policy with the topology widget
Before you can use the topology widget to visualize data from a Netcool/Impact
policy in the console, you need to specify certain fields in the policy.

About this task

The topology widget is intended for use with the tree widget. You use the fields
described here with the fields that you specify for the tree widget. For more
information, see “Integrating the tree widget with an Impact object or an array of
Impact objects” on page 174

Generally, the nodes are connected in a hierarchy. However, this connection is not
technically required. If you define a node that is not part of a hierarchy, it is
displayed as a stand-alone node that is not part of any other hierarchy.

Procedure
v You must include the following statement in the first object in the policy:

ObjectName.UITreeNodeType= <Node Type>;

where <Node Type> is either GRAPH or TREE. If you do not specify a value, the
default value is TREE.

v You must specify a label for each object. If you do not, the system displays No
label was specified for the label and tooltip. To specify a label, add the
following statement for each object:
ObjectName.UITreeNodeLabel=<Tooltip text>

where <Tooltip text> is the text that is used for the label and tooltip.
v Define the status for each node. This status is not mandatory. If you do not add

this statement, the status is unknown. If you want to display the status for each
object, add the following statements for each node.
ObjectName.UITreeNodeStatus=<Status>;

Chapter 14. Working with the Netcool/Impact UI data provider 177

where <Status> is the status. The table lists the supported values and the
numbers that represent those values. You can use either the number or the word
to represent the status.

Table 49. Tree node status

Status Number

Critical 5

Major 4

Minor 3

Warning 2

Normal 0

Unknown

Example

The following examples illustrate how to define a policy that you want to use with
the tree and topology widgets. This example policy includes a multi-level topology
and a node status that represents severity.
Log("Test Topo");
O0=NewObject();
O0.UITreeNodeType="GRAPH";
O0.UITreeNodeId=0;
O0.UITreeNodeLabel="NJ-Bayonne";
O0.UITreeNodeStatus="Warning";
O0.state="NJ";
O0.city="Bayonne";

O1=NewObject();
O1.UITreeNodeId=1;
O1.UITreeNodeStatus="Normal";
O1.UITreeNodeParent=0;
O1.UITreeNodeLabel="NY-Queens";
O1.state="NY";
O1.city="Queens";

O2=NewObject();
O2.UITreeNodeId=2;
O2.UITreeNodeStatus="Critical";
O2.UITreeNodeParent=1;
O2.UITreeNodeLabel="NC-Raleigh";
O2.state="NC";
O2.city="Raleigh";

O3=NewObject();
O3.UITreeNodeId=3;
O3.UITreeNodeParent=0;
O3.UITreeNodeStatus="Warning";
O3.UITreeNodeLabel="CA-Los Angeles";
O3.state="CA";
O3.city="Los Angeles";

O4=NewObject();
O4.UITreeNodeId=4;
O4.UITreeNodeParent=3;
O4.UITreeNodeStatus="Normal";
O4.UITreeNodeLabel="CO-Denver";
O4.state="CO";
O4.city="Denver";

O5=NewObject();

178 Netcool/Impact: Solutions Guide

O5.UITreeNodeId=5;
O5.UITreeNodeStatus="Critical";
O5.UITreeNodeParent=4;
O5.UITreeNodeLabel="MA-Main";
O5.state="MA";
O5.city="Main";

O6=NewObject();
O6.UITreeNodeId=6;
O6.UITreeNodeParent=0;
O6.UITreeNodeStatus="Warning";
O6.UITreeNodeLabel="NH-New Hampshire";
O6.state="NH";
O6.city="New Hampshire";

O7=NewObject();
O7.UITreeNodeId=7;
O7.UITreeNodeParent=6;
O7.UITreeNodeStatus="Normal";
O7.UITreeNodeLabel="TX-Hudson";
O7.state="TX";
O7.city="Houston";

O8=NewObject();
O8.UITreeNodeId=8;
O8.UITreeNodeParent=7;
O8.UITreeNodeStatus="Critical";
O8.UITreeNodeLabel="VA-Virgina Beach";
O8.state="VA";
O8.city="Virigina Beach";

Obs={O0,O1,O2,O3,O4,O5,O6,O7,O8};

After you implement the policy you need to create the output parameters and
custom schema values. For more information about how to do this, see
“Configuring user parameters” on page 166.

Displaying status and percentage in a widget
You can show status and percentage in topology, tree, table, and list widgets by
using policies or data types. To show status and percentages in a widget, you must
create a script in JavaScript format in the data type. Or you can use a policy that
uses the GetByFilter function.

About this task

For data types, SQL, SNMP, and internal data types are supported. For policies the
GetByFilter, DirectSQL and Impact Object, and Array Of Impact Objects are
supported.
1. Create the data type.
2. In the data type configuration window, add the script to the Define Custom

Types and Values (JavaScript) area.
3. Click the Check Syntax and Preview Sample Result button to preview the

results and to check the syntax of the script.

For DirectSQL and Impact Object, Array Of Impact Objects, the Status, and
Percentage can be specified when you create the schema definition. For policies,
you can use IPL or JavaScript for the DirectSQL or GetByFilter functions.

The script uses the following syntax for data types and for policies that use the
GetByFilter function.

Chapter 14. Working with the Netcool/Impact UI data provider 179

ImpactUICustomValues.put("FieldName,Type",VariableName);

Where Type is either Percentage or Status. VariableName, can be a variable or
hardcoded value. Always cast the variable name to String to avoid any error even
if the value is numeric. See the following examples:
ImpactUICustomValues.put("MyField,Percentage",""+VariableName);

ImpactUICustomValues.put("MyField,Percentage","120");

ImpactUICustomValues.put("FieldName,Percentage",""+(field1/40));

The status field expects the value to be similar to the Topology widget
configuration:

Table 50. Status field values

Status Number

Critical 5

Major 4

Minor 3

Warning 2

Normal 0

Intermediate (Available when the
connection to Netcool/Impact uses https.)

1

There is no limit to how many fields you can put in the variable
ImpactUICustomValues. The variable must be at the very end of the script. Anything
before the variable must be in JavaScript and can be anything if the variable
ImpactUICustomValues is populated correctly.

Example 1:

Assigns the field name from the table to be the status or the percentage and
assigns the field value. This example assigns SHAREUPSHAREDOWN and PROFIT as the
percentages, and STANDING as the status.
ImpactUICustomValues.put("SHAREUP,Percentage",SHAREUP);
ImpactUICustomValues.put("SHAREDOWN,Percentage",SHAREDOWN);
ImpactUICustomValues.put("PROFIT,Percentage",PROFIT);
ImpactUICustomValues.put("STANDING,Status",STANDING);

Example 2:

This example has an extra calculation to determine the value of percentage or
status fields. The percentage assumes the maximum value to use is 100. Then, a
factor is used to scale the values that are based on the maximum value that is
expected by the user. The status and percentage is scaled based on a factor.
var status = "Normal";
var down = 0;
var up = 0;
var factor = (TOTAL / 100);
down = (DOWN / factor);
up = (UP / factor);
var statusFactor = (DOWN / TOTAL) * 100;
if (statusFactor >= 50) {

status = "Critical";
} else if (statusFactor >= 30) {

status = "Major";
} else if (statusFactor >= 20) {

180 Netcool/Impact: Solutions Guide

status = "Minor";
} else if (statusFactor >= 10) {

status = "Warning";
} else {

status = "Normal";
}
ImpactUICustomValues.put("DownPercentage,Percentage",""+down);
ImpactUICustomValues.put("UpPercentage,Percentage",""+up);
ImpactUICustomValues.put("NetworkStatus,Status",""+status);

Example 3:

This example uses extra fields that do not exist in the table and used to be the
Status and Percentage. The values are the exact values that come from fields that
exist in the table. Calculation can be used to assign different values:
ImpactUICustomValues.put("CPUPercentUsage,Percentage",CPUUsage);
ImpactUICustomValues.put("RAMPercentUsage,Percentage",RAMUsage);
ImpactUICustomValues.put("DiskPercentUsage,Percentage",DiskUsage);
ImpactUICustomValues.put("NetworkAvailability,Status",NetworkStatus);

Tip: The Table or List widget shows duplicate entries or have missing data when
you compare the data to the data type data items. Check the data source to ensure
that all keys are unique.

Tip: If you use a policy function to create a dynamic filter, you can get a message
in the policy log. The messages states that the filter variable is not defined in
policy. No eventing occurs between widgets. Check that you are not using any
special characters in the custom value in the data type for example,
ImpactUICustomValues.put("CPU%,Percentage",""+value). The widgets do not
support special characters in field names.

Tip: If a data type field type is incorrectly defined, for example the field is
defined as an integer, but contains float values the widget fails to load. The widget
shows a message similar to this example:
Failed to load

To resolve the issue, edit the data type field and select the correct data type float.

Visualizing data from the UI data provider in the console
You can use the Netcool/Impact UI data provider to visualize data in the IBM
Dashboard Application Services Hub, referred to as the console throughout this
section.

You can visualize data from Netcool/Impact in the console. You can use data types
or Netcool/Impact policies to provide this data. You can also use Netcool/Impact
policies to create mashups of data from multiple sources.

The example scenarios that are provided are intended to provide examples that
help you when you are trying to visualize your own data in the console.

Before you can implement any of the examples below, you must set up the remote
connection between Netcool/Impact and the console. For more information, see
“Setting up the remote connection between the UI data provider and the console”
on page 164.

Chapter 14. Working with the Netcool/Impact UI data provider 181

Note: If you use the line or pie chart widget to visualize data from a DB2 data
type, you must change the number of items per page from All to a number. For
example, change it to 50.

Example scenario overview
Read the following example scenarios to get an overview of the possible ways to
integrate the UI data provider and the console.

For more scenarios and examples visit the Netcool/Impact developerWorks wiki
Scenarios and examples page available from the following URL:

https://www.ibm.com/developerworks/mydeveloperworks/wikis/
home?lang=en#/wiki/Tivoli%20Netcool%20Impact/page/Scenarios%20and
%20examples

Visualizing data from a DB2 database table in a line chart
You can use the console to visualize data that is retrieved directly from a data type
in Netcool/Impact.

About this task

This example uses a line chart to visualize data. You can use the same process to
visualize the data in a bar, column, or line chart.

Procedure
1. Create a DB2 data source.

a. Enter NewDataSource in the Data Source Name field.
b. Enter the user name and password for the database.
c. Complete the other fields as required.
d. Save the data source.

2. Create a data type for the DB2 data source.
a. Enter NewUIDPDT as the name and complete the required fields.
b. To ensure that the data type is compatible with the UI data provider, select

the UI data provider: enabled check box.
c. Select the key fields for the data type.
d. Save the data type.

3. Create a page in the console.
a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter Page for DB2 in the Page Name field.
d. Save the page.

4. Create a widget in the console.
a. Open the Page for DB2 page that you created.
b. Drag the Line Chart widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the NewUIDPDT data type that belongs to the

NewDataSource data source. The data type is only displayed after the
defined refresh interval. The default is 5 minutes.

182 Netcool/Impact: Solutions Guide

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact/page/Scenarios%20and%20examples
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact/page/Scenarios%20and%20examples
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact/page/Scenarios%20and%20examples

e. The Visualization Settings UI is displayed. Enter the values that you want
to use for the y axis. You can select multiple lines. You can also select a text
to display as a tooltip. Click Ok.

f. To ensure that the console can display all the items, change the number of
items that are allowed per page from all to a number. Click Settings. In the
Items per page list list, change the number of items per page from All to a
number.

g. To save the widget, click the Save and exit button on the toolbar.

Results

When you display the widget, the data is retrieved directly from the data type in
Netcool/Impact and displayed in a line chart.

Visualizing data from a Netcool/Impact policy in a pie chart
You can use the pie chart widget in the console to visualize data from the UI data
provider.

Procedure
1. Create a policy to provide the data for the pie chart widget. The policy must

group all the items from a database table into a single Impact object.
For example, define the following policy, called Policyforpiechart, that gathers
the rows in the database table into a single Impact object:
obj = NewObject ();
obj.name = ’Internet Banking’;
obj.availabilityduringoperationalhours=99.9;
obj.availabilityduringnonoperationalhours=95;

2. Create the user output parameters for the policy.
a. In the policy editor, click the Configure User Parameters icon to create the

output parameter.

Table 51. Output parameters for MyNewObject

Field User entry

Name MyNewObject

Policy Variable Name Obj

Format Impact Object

You must enter the name of the Impact object exactly as it is defined in the
policy in the Policy Variable Name field.

b. You must create the custom schema values for the fields in the object. In
this example, the Impact object contains two fields that are integers.
After you select Impact Object in the Format field, the system displays the

Open the Schema Definition Editor icon

beside the Schema
Definition field. To open the editor, click the icon.
You define the following custom schema definitions for the policy.

Table 52. Custom schema for operational and non-operational hours

Name Format

availabilityduringoperationalhours Integer

availabilityduringnonoperationalhours Integer

3. Create a page.

Chapter 14. Working with the Netcool/Impact UI data provider 183

a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter Page for Pie Chart in the Page Name field.
d. Save the page.

4. Create a pie chart widget.
a. Open the Page for Pie Chart page that you created.
b. Drag the Pie chart widget into the content area.
c. To configure the widget data, click the down arrow icon and click Edit. The

Select a dataset window is displayed.
d. Select the dataset. Select the MyNewObject datatype that belongs to the

Policyforpiechart datasource. The dataset represents the user output
parameter that you defined previously. The dataset is only displayed after
the defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. To ensure that the policy runs
when the widget is displayed, select the executePolicy check box.

f. Select the values that you want to use for the pie chart. In this example,
select obj.availabilityduringoperationalhours and
obj.availabilityduringnonoperationalhours. To save your selection, click Ok

g. To ensure that the console can display all the items, change the number of
items allowed per page from all to a number. Click Settings. In the Items
per page list list, change the number of items per page from All to a
number.

h. To save the widget, click the Save and exit button on the toolbar.

Results

The data from the UI data provider is displayed as a pie chart in the console.

Visualizing data mashups from two web services in a table
You can use Netcool/Impact policies to create mashups of data from different
sources such as web services. You can also use the console and the UI data
provider to visualize the data from these mashups.

About this task

The following example uses a policy that is created in Netcool/Impact to retrieve
data from two different web services. The policy uses an array to group the results.
After you create the policy, you can use a table widget to visualize the data
mashup.

Procedure
1. In the policy editor, create a policy that is called

TestArrayOfObjectsWebService. For example, create the following policy. This
policy is based on the WSDL at http://wsf.cdyne.com/WeatherWS/
Weather.asmx?WSDL. Create the policy as follows:
a. Define the package that was defined when the WSDL file was compiled in

Netcool/Impact.
WSSetDefaultPKGName(’weather’);

b. Specify the parameters.
GetCityWeatherByZIPDocument=WSNewObject("com.cdyne.ws.weatherws.
GetCityWeatherByZIPDocument");
_GetCityWeatherByZIP=WSNewSubObject(GetCityWeatherByZIPDocument,

184 Netcool/Impact: Solutions Guide

http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL
http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL

"GetCityWeatherByZIP");

_ZIP = ’07002’;
_GetCityWeatherByZIP[’ZIP’] = _ZIP;

WSParams = {GetCityWeatherByZIPDocument};

c. Specify the web service name, end point, and method.
WSService = ’Weather’;
WSEndPoint = ’http://wsf.cdyne.com/WeatherWS/Weather.asmx’;
WSMethod = ’GetCityWeatherByZIP’;

d. Use the GetbyXpath policy function to get the value for the element that you
want.
nsMapping= NewObject();
nsMapping.tns = "http://ws.cdyne.com/WeatherWS/";
nsMapping.xsd="http://www.w3.org/2001/XMLSchema" ;
nsMapping.soap="http://www.w3.org/2003/05/soap-envelope" ;
nsMapping.xsi="http://www.w3.org/2001/XMLSchema-instance";

log("About to invoke Web Service call GetCityWeatherByZIP");

WSInvokeDLResult = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams);
log("Web Service call GetCityWeatherByZIP return result: " +WSInvokeDLResult);

Result1=GetByXPath(""+WSInvokeDLResult, nsMapping, xPathExpr);

Object1=NewObject();
Object1.City=Result1.Result.City[0];
Object1.State=Result1.Result.State[0];
Object1.Temperature=Result1.Result.Temperature[0];

e. Start the WebService call.
log("About to invoke Web Service call GetCityWeatherByZIP");

WSInvokeDLResult = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams);
log("Web Service call GetCityWeatherByZIP return result: " +WSInvokeDLResult);

f. Define another call.
_ZIP = ’23455’;
_GetCityWeatherByZIP[’ZIP’] = _ZIP;

WSParams = {GetCityWeatherByZIPDocument};
log("About to invoke Web Service call GetCityWeatherByZIP");

WSInvokeDLResult = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams);
log("Web Service call GetCityWeatherByZIP return result: " +WSInvokeDLResult);

//Retrieve the element values and assign them to an object
xPathExpr = "//tns:State/text() |//tns:City/text() | //tns:Temperature/text()";

g. Define and assign values to the Impact Objects.
xPathExpr = "//tns:State/text() |//tns:City/text() | //tns:Temperature/text()";
Result2=GetByXPath(""+WSInvokeDLResult, nsMapping, xPathExpr);

Object2=NewObject();
Object2.City=Result2.Result.City[0];
Object2.State=Result2.Result.State[0];
Object2.Temperature=Result2.Result.Temperature[0];

CustomObjs= {Object1,Object2};

log(CustomObjs);

2. Define the user output parameters for the array of objects.
You must create the following user output parameters for the array that is
contained in the policy that you created. In the policy editor, click the
Configure User Parameters icon to create the output parameters for the array
of objects.

Chapter 14. Working with the Netcool/Impact UI data provider 185

Table 53. Output parameters for MyArrayObj1

Field User entry

Name MyArrayofCustomObjects

Policy Variable Name CustomObjs

Format Array of Impact Object

You must enter the exact name of the array as it is in the policy in the Policy
Variable Name field.

3. Create a page.
a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter Page for Array of Objects in the Page Name field.
d. To save the page, click Ok.

4. Create a table widget.
a. Open the Page for Array of Objects page that you created.
b. Drag the Table widget into the content area.
c. To configure the widget data, click the down arrow icon and click Edit. The

Select a dataset window is displayed.
d. Select the dataset. Select the MyArrayofCustomObjects data type that

belongs to the TestArrayOfObjectsWebService data source. The dataset
information is only displayed after the defined refresh interval. The default
is 5 minutes.

e. The Visualization Settings UI is displayed. The system displays all the
available columns by default. You can change the displayed columns in the
Visualization Settings section of the UI. You can also select the row
selection and row selection type options.

f. To ensure that the policy runs when the widget is displayed, select the
executePolicy check box. Click Ok.

g. To save the widget, click the Save and exit button on the toolbar.

Results

When you open the table widget, the data from two different sources is displayed
in a table.

Visualizing data mashups with an array of Impact objects
You can use Netcool/Impact policies to create mashups of data from the DirectSQL
policy function and another sources. You can use the console and the UI data
provider to visualize the data from these mashups in a table.

Procedure
1. In the policy editor, create a policy that is called MultipleObjectsPolicy. The

policy uses the DirectSQL policy function to retrieve the data from the
defaultobjectserver data source. The policy also retrieves data from one other
source.
Create the following policy called MultipleObjectsPolicy.
Log("Test Policy with Multiple different objects..");
NodesVarJS=DirectSQL(’defaultobjectserver’,"SELECT Node,Identifier,
Severity from alerts.status", null);
Log("ClassOf() " + ClassOf(NodesVarJS));
Obj1=NewObject();
Obj1.fname="MyFirstName";

186 Netcool/Impact: Solutions Guide

Obj1.lname="MyLastName";
Obj1.city="MyCity";
MyObjsAll={Obj1};
i=0;
while(i < length(NodesVarJS)) {

O = newObject();
O.Node=NodesVarJS[i].Node;
O.Identifier=NodesVarJS[i].Identifier;
O.Severity=NodesVarJS[i].Severity;
MyObjsAll = MyObjsAll + {O};
i = i +1;

}

Log("MyObjs is " + MyObjsAll);

2. Define the user output parameters for the array of objects in the policy.
In the policy editor, click the Configure User Parameters icon to create the
output parameters for the array of objects.

Table 54. Output parameters for MyObjsAll

Field User entry

Name MyArrayofObjects

Policy Variable Name MyObjsAll

Format Array of Impact Object

You must enter the exact name of the array as it is in the policy in the Policy
Variable Name field.
For details about defining the user output parameters for the array of objects in
the policy, see “Creating custom schema values for output parameters” on page
170

3. Create a page.
v Open the console.
v To create a page, click Settings > New Page.
v Enter Page for Table in the Page Name field.
v Save the page.

4. Create a table widget.
a. Open the Page for Table page that you created.
b. Drag the Table widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the MyArrayofObjects data type that belongs to

the MultipleObjectsPolicy data source. The dataset information is only
displayed after the defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. The system displays all the
available columns by default. You can change the displayed columns in the
Visualization Settings section of the UI. You can also select the row
selection and row selection type options.

f. To ensure that the policy runs when the widget is displayed, select the
executePolicy check box. Click Ok.

g. To save the widget, click the Save and exit button on the toolbar.

Results

When you display the table widget, the data from the DirectSQL policy function
and the other source is displayed in a table.

Chapter 14. Working with the Netcool/Impact UI data provider 187

Visualizing data output by the GetByFilter policy function in a
list
You can use the list widget to visualize data from a Netcool/Impact policy that
contains the GetByFilter policy function in the console.

Procedure
1. In the Netcool/Impact policy editor, create a Netcool/Impact policy.

Create a policy that is called IPLGetByFilterPolicy that includes the
GetByFilter policy function. You want to visualize the data that is output by
the policy function. In this example, the filter is defined statically within the
policy. In a real world situation, you might want to pass the values
dynamically from the UI data provider to the policy function.
Log (“Executing IPL Impact Policy”);
filter = "SERVICEREQUESTIDENTIFIER = 1";
GetbyFilter ('dataTypeforDemoUIDP’, filter, false);

2. Define the output parameter for the data items. This parameter is made
available to the UI data provider and are displayed as a data type in the
console.
In the policy editor, click the Configure User Parameters icon and the Policy
output parameter:New push button to create the output parameters for the
data items.

Table 55. User output parameters for data items

Field Entry

Name DataFromPolicy

Policy Variable Name DataItems

Format Datatype

Data Source Name localDB2UIDPTest

Data Type Name dataTypeforUIDPdemo

For details about defining the user output parameters for the array of objects in
the policy, see “Creating custom schema values for output parameters” on page
170

3. Create a page in the console.
a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter Page for List in the Page Name field.
d. To save the page, click Ok.

4. Create a list widget.
a. Open the Page for List page that you created.
b. Drag the List widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the DataFromPolicy datatype that belongs to the

IPLGetByFilterPolicy datasource. The dataset information is only displayed
after the defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. You must select values for the
label, status, description and timestamp. You can also configure a number of
optional settings such as the size of the page.

188 Netcool/Impact: Solutions Guide

f. To ensure that the policy runs when the widget is displayed, select the
executePolicy check box. Click Ok.

g. To save the widget, click the Save and exit button on the toolbar.

Results

When you display the widget, the policy is run. The information that is contained
in the policy results is added to the widget and is displayed as a list.

Visualizing data output by the DirectSQL policy function in an
analog gauge
You can use the analog gauge widget to visualize data from a Netcool/Impact
policy that contains the DirectSQL policy function in the console.

Procedure
1. In the policy editor in Netcool/Impact, create a policy that uses the DirectSQL

policy function.
Create the following policy that includes the DirectSQL policy function called
TestDirectSQL:
Log(“TestDirectSQL);
query= "select SUM(VALUE) as sumvalue, HISTORYRESOURCENAME, METRICNAME ,
(HISTORYRESOURCENAME || METRICNAME) as key from

TBSMHISTORY.HISTORY_VIEW_RESOURCE_METRIC_VALUE;
DirectSQL (’directSQLSample’.query.false);

This policy accesses data from a database table and sums a particular column
in the table to create a sum value. The policy also groups a number of columns.

2. Define the output parameters for the policy.
To define the output parameters for the policy, click the Configure User
Parameters icon.

Table 56. Output parameters for IPLDirectSQL policy

Field Entry

Name IPLDirectSQL

Policy Variable Name DataItems

Format DirectSQL

You must also create new custom schema values to represent the values that
are contained in the fields of the DirectSQL policy function. After you select
DirectSQL in the Format field, the system displays the Open the Schema
Definition Editor icon. To create a value, click the icon. You must enter a name
for each new value and select a format. For this example, create the following
custom schema values:

Table 57. Custom schema values for IPLDirectSQL output parameter

Name Value

HISTORYRESOURCENAME String

METRICNAME String

sumvalue Float

3. Create a page.
a. Open the console.
b. To create a page, click Settings > New Page.

Chapter 14. Working with the Netcool/Impact UI data provider 189

c. Enter Page for Analog Gauge in the Page Name field.
d. To save the page, click Ok.

4. Create an analogue gauge widget
a. Open the Page for Analog Gauge page that you created.
b. Drag the Analog Gauge widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the IPLDirectSQL datatype that belongs to the

TestDirectSQL datasource. The dataset information is only displayed after
the defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. Select the value that you want
to display in the gauge in the Value field. In this example, you enter
SUMVALUE in the field. You can also select a number of other optional values
for the gauge such as minimum value, maximum value and unit of
measure.

f. To ensure that the policy runs when the widget is displayed, select the
executePolicy check box. Click Ok.

g. To save the widget, click the Save and exit button on the toolbar.

Results

When you display the widget, the policy is run and the information that is
contained in the policy results is displayed as a gauge.

Visualizing data with the tree and topology widgets
You can use the tree and topology widgets with the UI data provider to visualize
hierarchical and topological data from a Netcool/Impact policy in the console.

About this task

You use the tree and topology widget to visualize a hierarchy with topological data
in the console. This example demonstrates how to do so for a specific policy. For
more information about the requirements for using these widgets, see “Integrating
the tree widget with an Impact object or an array of Impact objects” on page 174
and “Integrating data from a policy with the topology widget” on page 177.

Procedure
1. In the policy editor in Netcool/Impact, create a policy that is called

TestTreeTopoPolicy.
The policy uses the ArrayofImpactObjects policy function to retrieve
information about addresses. This information is hierarchical. Entries are
ordered by number, city, and country. You also want to add topological
information about the status of an entry to the policy.
MyObject1=NewObject();
MyObject1.country="United States";
MyObject1.city="New York";

MyObject2=NewObject();
MyObject2.country="United States";
MyObject2.city="Philadelphia";

MyObject3=NewObject();
MyObject3.country="England";

190 Netcool/Impact: Solutions Guide

MyObject3.city="London";

MyArrayOfObjects={MyObject1,MyObject2,MyObject3};

2. Next, you must make the policy compatible with the tree widget. To make the
policy compatible with the tree widget, you must add the UITreeNodeId and
UITreeNodeParent parameters to the policy.
MyObject1=NewObject();
MyObject1.UITreeNodeId=0;
MyObject1.country="United States";
MyObject1.city="New York";

MyObject2=NewObject();
MyObject2.UITreeNodeId=1;
MyObject2.UITreeNodeParent=0;
MyObject2.country="United States";
MyObject2.city="Philadelphia";

MyObject3=NewObject();
MyObject3.UITreeNodeId=2;
MyObject3.UITreeNodeParent=1;
MyObject3.country="England";
MyObject3.city="London";

MyArrayOfObjects={MyObject1,MyObject2,MyObject3}

3. Next, you must make the policy compatible with the topology widget. To make
the policy compatible with the tree widget, you must add the UITreeNodeType,
UITreeNodeLabel, and UITreeNodeStatus fields to the policy.
MyObject1=NewObject();
MyObject1.UITreeNodeId=0;
MyObject1.country="United States";
MyObject1.city="New York";
UITreeNodeType="GRAPH";
UITreeNodeLabel="NY";
UITreeNodeStatus="Major";

MyObject2=NewObject();
MyObject2.UITreeNodeId=1;
MyObject2.UITreeNodeParent=0;
MyObject2.country="United States";
MyObject2.city="Philadelphia";
UITreeNodeLabel="PA";
UITreeNodeStatus="Minor";

MyObject3=NewObject();
MyObject3.UITreeNodeId=2;
MyObject3.UITreeNodeParent=1;
MyObject3.country="England";
MyObject3.city="London";
UITreeNodeLabel="LN";
UITreeNodeStatus="Warning";

MyArrayOfObjects={MyObject1,MyObject2,MyObject3};

4. Define the user output parameters for the array of objects in the policy.

Table 58. User output parameters for MyObjArray

Field Entry

Name MyObjArray

Policy Variable Name MyArrayOfObjects

Format Array of Impact Object

Chapter 14. Working with the Netcool/Impact UI data provider 191

For details about defining the user output parameters for the array of objects in
the policy, see “Creating custom schema values for output parameters” on page
170

5. Create a page in the console.
a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter Page for Tree and Topology in the Page Name field.
d. To save the page, click Ok.

6. Create a tree and a topology widget in the console.
a. Open the Page for Tree and Topology page that you created.
b. Drag the Tree widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the MyObjArray data type that belongs to the

TestTreeTopoPolicy data source. The dataset information is only displayed
after the defined refresh interval. The default is 5 minutes.

e. The Visualization Settings window is displayed. To ensure that the policy
runs when the widget is displayed, select the executePolicy check box.
Click Ok.

f. To save the widget, click the Save and exit button on the toolbar
g. Drag the Topology widget into the content area.
h. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
i. Select the dataset. Select the MyObjArray data type that belongs to the

TestTreeTopoPolicy data source. The dataset information is only displayed
after the defined refresh interval. The default is 5 minutes.

j. The Visualization Settings window is displayed. To ensure that the policy
runs when the widget is displayed, select the executePolicy check box. Click
Ok.

k. To save the widget, click the Save and exit button on the toolbar.

Results

The data from the UI data provider is displayed in a hierarchy in the console
alongside the status.

Filtering data output by a policy in the console
If you visualize data from a policy that contains runtime parameters, you can use
the runtime parameters to filter the values that are displayed in the console.

Procedure
1. Create a policy that contains runtime parameters.

In this example, create a policy that is called TestKey that contains the GetByKey
policy function. The runtime parameter is the Key parameter.
DataType = "Node";
MaxNum = 1;
MyCustomers = GetByKey(DataType, Key, MaxNum);

2. Create the Key user runtime parameter. In the policy editor, click the Configure
User Parameters icon to create the user runtime parameter.

192 Netcool/Impact: Solutions Guide

Table 59. Node user runtime parameter

Field Entry

Name Node

Policy Variable Name Key

Format String

3. Create a page
v Open the console.
v To create a page, click Settings > New Page.
v Enter Page for Bar Chart in the Page Name field.
v Save the page.

4. Create a bar chart widget.
a. Open the Page for Bar Chart page that you created.
b. Drag the Bar Chart widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the DataFromPolicy datatype that belongs to the

TestKey data source. The dataset information is only displayed after the
defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed.
f. The runtime parameters that are available for the policy are listed under

Configure Optional Dataset. You can enter the values that you want to filter
for here. In this example, the system displays a field that is called Key. If
you enter a value here, for example, R12345, only the data from the rows
that contain the key field value R12345 is displayed. In this way, you can
filter the values for the runtime parameters in the console.

g. To ensure that the policy runs when the widget is displayed, select the
executePolicy check box. Click Ok.

h. To save the widget, click the Save and exit button on the toolbar.

Passing parameter values from a widget to a policy
You can use widgets to pass values as runtime parameters to policies in
Netcool/Impact.

About this task

In this example, you want to be able to send an email that contains contextual
information from a table widget. The information is passed as a runtime parameter
value from the widget in the console to the policy in Netcool/Impact.

This example uses the wire widget. You may experience problems with dragging
and dropping the widget. This is a known issue with the Tivoli Integrated Portal.
For more information, see http://www-01.ibm.com/support/
docview.wss?uid=swg21626092.

Procedure
1. Create a policy. For example, create the following policy that is called

DB2Emailpolicy that retrieves values for some rows in a DB2 table and sends
these values to an email address:

Chapter 14. Working with the Netcool/Impact UI data provider 193

http://www-01.ibm.com/support/docview.wss?uid=swg21626092
http://www-01.ibm.com/support/docview.wss?uid=swg21626092

Address = "srodriguez@example.com";
Subject = "Netcool/Impact Notification";
Message = EventContainer.Node + " has reported the following error condition: "
+ EventContainer.Summary;
Sender = "impact";
ExecuteOnQueue = false;

SendEmail(null, Address, Subject, Message, Sender, ExecuteOnQueue);

2. Create a page in the console.
a. Open the console.
b. Click Settings > Page.
c. Enter Pageforbutton in the Page Name field.
d. To save the page, click Ok.

3. Create a table widget that visualizes data from the DB2 database.
a. Open the Pageforbutton page.
b. Drag the Table widget into the content area.
c. To configure the widget data, click the down arrow icon and click Edit.
d. Select the dataset. Use the search box or the Show All button to find the

dataset that represents the DB2 database table.
e. To save the widget, click the Save button.

4. Create a button widget. Enter the name of the button and specify the parameter
that you would like to display in the console UI.
a. Drag the button widget that you created into the content area.
b. Enter a name. In this example, enter Emailbutton.
c. Select the dataset. In this example, Use the search box or the Show All

button to find the dataset that represents the policy that you created and
select it.

d. To ensure that the policy is run when the user clicks the button, select the
executePolicy check box.

e. To save the button widget, click Save.
5. Create a wire.

a. Click the Show Wire icon and click the New Wire button.
b. Select the table widget as the source event for the new wire. Select Table >

NodeClickOn.
c. Select the target for the wire. Select the button widget that you created.
d. Select None for the transformation.
e. To save the wire, click Ok and click the Save button on the toolbar on the

page.

Results

After you complete this task, the Send button is displayed on the console. When a
user clicks the Send button, the information that is contained in the row in the
table is sent as an email to the address specified by the policy.

Passing parameter values from a table to a gauge
This example demonstrates how you can use Netcool/Impact policies to pass
variables as runtime parameters from a widget to a policy and on to another
widget.

194 Netcool/Impact: Solutions Guide

About this task

In this example, users want to select rows in a table and display the status for the
row in a gauge widget. You create 2 Netcool/Impact policies to facilitate this. One
policy is the publisher policy and provides data in an output parameter to the
second policy, the subscriber policy. The subscriber policy receives data from the
publisher policy in a policy runtime parameter and it outputs the results as an
output parameter. The data contained in the output parameter is then visualized as
a gauge in the console.

The publisher policy retrieves the SiteStatus data from the ObjectServer. The
subscriber policy retrieves related data from the DB2 database.

Procedure
1. Create the publisher policy.

The following policy is called PolicyEventingPublisher and uses the DirectSQL
policy function to retrieve data from the defaultobjectserver data source. You
need to create a new integer field called SiteStatus in the ObjectServer if you
have not done so already.
Log("Policies Eventing From OS...");
DataFromOS=DirectSQL(’defaultobjectserver’,
"SELECT SiteStatus,Node,Identifier from alerts.status",false);

Create the output parameter so that the widget can visualize the data.

Table 60. Output parameter for DatafromOS

Field Entry

Name DatafromOS

Policy Variable Name DatafromOS

Format DirectSQL / UI provider datatype

Create the custom schema values for the fields that you want to display in the
console. You need to create 3 custom schema values. You also need to select the
Key Field checkbox for the SiteStatus value.

Table 61. Custom schema value for SiteStatus

Field Entry

Name SiteStatus

Format Integer

Table 62. Custom schema value for Node

Field Entry

Name Node

Format String

Table 63. Custom schema value for Identifier

Field Entry

Name Identifier

Format String

2. Create the subscriber policy.

Chapter 14. Working with the Netcool/Impact UI data provider 195

The following policy is called PolicyEventingSubscriber and uses the
GetByFilter function to retrieve the value for SiteStatus that is output by the
publisher policy. The publisher policy retrieves the SiteStatus data from the
ObjectServer. The subscriber policy retrieves related data from the DB2
database.
Log("Demo Policies Eventing From DB2...");
Filter="SiteStatus="+ SiteStatus;
DataFromDB2=GetByFilter(’MachineInfo’,Filter,false);
Log(DataFromDB2);

Create the policy runtime parameter.

Table 64. SiteStatus runtime parameter

Field Entry

Name SiteStatus

Policy Variable Name SiteStatus

Format DirectSQL / UI provider datatype

Create the policy output parameter.

Table 65. DatafromDB2 output parameter

Field Entry

Name DatafromDB2

Policy Variable Name DatafromDB2

Format Datatype

Data Source Name DB2Source

Data Type Name MachineInfo

3. Create a page in the console.
a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter PageforMachineInfo in the Page Name field.
d. Save the page.

4. Create a table widget.
a. Open the PageforMachineInfo page that you created.
b. Drag the Table widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the DatafromOS datatype that belongs to the

PolicyEventingPublisher datasource. The datatype is only displayed after
the defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. The system displays all the
available columns by default. You can change the displayed columns in the
Visualization Settings section of the UI. You can also select the row
selection and row selection type options.

f. To ensure that the policy runs when the widget is displayed, select the
executePolicy check box. Click Ok.

g. To save the widget, click the Save and exit button on the toolbar.
5. Create a gauge widget.

a. Open the PageforMachineInfo page that you created.
b. Drag the Analog Gauge widget into the content area.

196 Netcool/Impact: Solutions Guide

c. To configure the widget data, click it. Click the down arrow icon and click
Edit. The Select a dataset window is displayed.

d. Select the dataset. Select the datatype DatafromDB2 that belongs to the
PolicyEventingSubscriber datasource. The datatype is only displayed after
the defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. Select the value that you want
to display in the gauge in the Value field. In this example, you select
SiteStatus from the list. You can also select a number of other optional
values for the gauge such as minimum value, maximum value and unit of
measure.

f. To ensure that the policy runs when the widget is displayed, select the
executePolicy check box. Click Ok.

g. To save the widget, click the Save and exit button on the toolbar.

Results

When a user selects a row in the table widget, the SiteStatus is displayed in the
gauge widget.

Visualizing a data mashup from two IBM Tivoli Monitoring
sources
You can use Netcool/Impact to visualize data from two different sources in IBM
Tivoli Monitoring.

Before you begin

Find the configuration details for each UI data provider that you wan to use. For
example, if you want to connect to an IBM Tivoli Monitoring system, you must
retrieve the following information for the Tivoli Enterprise Monitoring Server UI
data provider:
v User
v Password
v Port
v Base URL

About this task

Tip: You can also use this procedure to obtain data from Tivoli Monitoring 6.3 for
event management purposes, the only difference is that you omit the step that
describes how to create the user output parameters for the policies.

Procedure
1. Use the UI data provider DSA to create two data sources. Each data source

connects to a different IBM Tivoli Monitoring system. For example, create the
following data sources:
v Data source 1 retrieves data from ITM1
v Data source 2 retrieves data from ITM2
a. Create the data source that retrieves data from ITM1:

1) Enter ITM_DS1 in the Data Source Name field.
2) Enter the user name and password for the database.
3) Complete the other fields as required.
4) Save the data source.

Chapter 14. Working with the Netcool/Impact UI data provider 197

b. Create the data source that retrieves data from ITM2:
1) Enter ITM_DS2 in the Data Source Name field.
2) Enter the user name and password for the database.
3) Complete the other fields as required.
4) Save the data source.

For more information about how to create a data source for the UI data
provider DSA, see the section about creating a UI data provider data source in
the Netcool/Impact DSA Guide.

2. Create two data types for each data source that you created in the previous
step. Later, you combine the data from the two data types that belong to the
same data source into a single object. Then, you combine the data from the two
objects so that the data from the different systems is merged. For example,
create the following data types:
v Datatype1A - select Tivoli Enterprise Monitoring Agent
v Datatype1B - select Tivoli Enterprise Monitoring Agent
v Datatype2A - select Tivoli Enterprise Monitoring Agent
v Datatype2B - select Tivoli Enterprise Monitoring Agent
a. Create the data types as follows, changing the name for each data type:

1) Enter Datatype1A as the name and complete the required fields.
2) To enable the data type, select the Enabled check box.
3) Select the key fields for the data type.
4) Save the data type.

For more information about how to create a data type for the UI data provider
DSA, see the section about creating a UI data provider data type in the
Netcool/Impact DSA Guide.

3. To combine the data from the different sources, create a policy in
Netcool/Impact that uses the GetByFilter function. For this example, you must
create the following arrays to combine the data from the different sources:
v Array1A = GetByFilter()
v Array1B = GetByFilter()
v Array2A = GetByFilter()
v Array2B = GetByFilter()
For example, the following policy uses the GetByFilter function to combine the
data from the ITM_DS1 data source into a single object.
a. The output parameter of the policy is cpuLinuxITM={};.
b. Datatype1A retrieves data from a Tivoli Enterprise Monitoring Agent and it

also retrieves the IP address data for each node:
ipaddress01="";
DataType="datatype1A";
Filter="¶m_SourceToken=paramValue";

iparray=GetByFilter(DataType, Filter, false);
count=0;
while(count<Length(iparray)){
if((iparray[count].IPVERSION != "IPv6")&&(iparray[count].

IPADDRESS!="127.0.0.1")){
ipaddress01= iparray[count].IPADDRESS;

}
count = count +1;

}

198 Netcool/Impact: Solutions Guide

c. Datatype1B retrieves data from a Tivoli Enterprise Monitoring Agent and it
also provides processor usage data for each node. The policy creates an
array of metrics for each monitored node. It also enhances this information
with the IP address:
DataType="datatype1B";
Filter="¶m_SourceToken=paramValue&sort=BUSYCPU";
MyFilteredItems = GetByFilter(DataType, Filter, false);

index = 0;
if(Num > index){

while(index<Num){
cpu=NewObject();
cpu.TIMESTAMP= MyFilteredItems[index].TIMESTAMP;
cpu.ORIGINNODE= MyFilteredItems[index].ORIGINNODE;
cpu.BUSYCPU= MyFilteredItems[index].BUSYCPU;
cpu.IPADDRESS=ipaddress01;
cpuLinuxITM = cpuLinuxITM+{cpu};
index=index+1;

}
}

Log(" Finished collecting cpu usage from Metrics Agant :" + DataType);

For more information about using the GetByFilter function with the UI data
provider, see the topic about accessing data types output by the GetByFilter
Function in the Netcool/Impact Solutions Guide.

4. Create the user output parameters for the policies. In this example, cpuLinuxITM
is the output parameter that is defined in the policy. You must create an output
parameter for cpuLinuxITM as outlined in the table. To create a user output
parameter, open the policy editor and click the Configure User Parameters icon
and the Policy output parameter:New button.

Table 66. ITM1 output parameter

Field Entry

Name ITM1

Policy Variable Name cpuLinuxITM

Format Array of Impact Objects

This parameter ensures that the policy is exposed as part of the
Netcool/Impact UI data provider.
For more information about how to configure user parameters, see the topic
about how to configure user parameters in the Netcool/Impact Solutions
Guide.

5. Create a data source and data type that are based on the policy. In this
example, create the data source as follows:
a. Select ITM_mashup_policy from the list in the Data Source Name field.
b. Enter the user name and password for the database.
c. Select the Netcool/Impact UI data provider, Impact_NCICLUSTER, as the

provider.
d. Complete the other fields as required.
e. Save the data source.

Create the data type as follows:
a. Enter ITM_mashup_dt as the name and complete the required fields.
b. To ensure that the data type is compatible with the UI data provider, select

the UI data provider: enabled check box.

Chapter 14. Working with the Netcool/Impact UI data provider 199

c. Select the key fields for the data type.
d. Save the data type.

6. To confirm that the policy returns the correct data when it runs, right click the
data type and select View Data Items. Enter &executePolicy=true in the filter
and refresh.

7. Create a page in the console.
a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter Page for ITM mashup in the Page Name field.
d. Save the page.

8. Create a table widget that visualizes data from the policy's data type.
a. Open the Page for ITM mashup page that you created.
b. Drag the Table widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the dataset. Select the ITM_mashup_dt data type that belongs to the

ITM_mashup_policy data source. The data type is only displayed after the
defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. Enter the values that you want
to use. You can select multiple lines. You can also select a text to display as
a tooltip. Click Ok.

f. To save the widget, click the Save and exit button on the toolbar.

Results

After you create the table widget, the same data that was displayed in step 6 in
Netcool/Impact is displayed in the console.

Visualizing data from the Netcool/Impact self service dashboards
Netcool/Impact self service dashboard widgets are designed to enable users or
administrators to create dashboards. The self service dashboards are able to accept
user input through a customizable Input Form widget and can drive user actions
through a Button widget. Both of these widgets interact with Netcool/Impact
through the Netcool Rest API Interface.

Netcool/Impact 6.1.1.5 has a UI Data provider which makes Netcool/Impact data
available for consumption by dashboard widgets in the IBM Dashboard
Applications Services Hub. The UI Data provider works well for dashboards that
are intended for read-only usage but cannot interact dynamically with
Netcool/Impact policies. For example, you can create a dashboard with a table
widget which displays all the trouble tickets that are managed by Netcool/Impact.
However you cannot interact with the trouble tickets to create a ticket.

When the Netcool/Impact Self Service dashboard widgets are installed on the
console, you have the option of adding to the existing visualizations. You can
update the data through the execution of Netcool/Impact policies and to take
certain actions on a data set.

200 Netcool/Impact: Solutions Guide

Installing the Netcool/Impact Self Service Dashboard widgets
To create custom dashboards for Netcool/Impact to view in Jazz™ for Service
Management, you can add Netcool/Impact specific widgets to enhance the
capabilities of the dashboards you create.

Before you begin

Before you install the Netcool/Impact Impact_SSD_Dashlet.war file on the
Dashboard Application Services Hub Server. You must have the following
environment.
v A server with Netcool/Impact 6.1.1.5 installed.
v A server with IBM Dashboard Applications Services Hub installed and

configured with a data connection to the Netcool/Impact 6.1.1.5 server. For
information about setting up a connection between the Impact server and Jazz
for Service Management, see “Setting up the remote connection between the UI
data provider and the console” on page 164.

For more information about Jazz for Service Management, see the Jazz for Service
Management infocenter available from the following URL: http://
pic.dhe.ibm.com/infocenter/tivihelp/v3r1/index.jsp?topic=
%2Fcom.ibm.psc.doc_1.1.0%2Fpsc_ic-homepage.html.

Procedure
1. Log on to the Impact server.
2. Navigate to the add-ons directory, %IMPACT%/add-ons/ssd.
3. Copy the Impact_SSD_Dashlet.war file over to the Dashboard Application

Services Hub Server. Note the location where you download the file to. For
example, C:\build\Impact_SSD_Dashlet.war.

4. On the Dashboard Application Services Hub Server, run the wsadmin tool by
using one of the following commands:
v UNIX: %INSTALL%/JazzSM/profile/bin/wsadmin.sh
v Windows: %INSTALL%/JazzSM/profile/bin/wsadmin.bat

Where %INSTALL% is the installed location of Jazz for Service Management.
5. Run the following command all on one line to install the

Impact_SSD_Dashlet.war file.
$AdminApp update isc modulefile
{-operation addupdate -contents "<ImpactSSDWar>"
-custom paavalidation=true
-contenturi Impact_SSD_Dashlet.war
-usedefaultbindings
-contextroot /Impact_SSD_Dashlet
-MapWebModToVH {{.* .* default_host}}}

Where <ImpactSSDWar> is the location of the copied war file. For example,
C:\build\Impact_SSD_Dashlet.war.

6. If the wsadmin command succeeds without any errors, use the following
command to save the changes:
$AdminConfig save

7. Use one of the following commands to restart the Dashboard Application
Services Hub Server:
v UNIX:

%INSTALL%/JazzSM/profile/bin/stopServer.sh server1
%INSTALL%/JazzSM/profile/bin/startServer.sh server1

Chapter 14. Working with the Netcool/Impact UI data provider 201

http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/index.jsp?topic=%2Fcom.ibm.psc.doc_1.1.0%2Fpsc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/index.jsp?topic=%2Fcom.ibm.psc.doc_1.1.0%2Fpsc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/index.jsp?topic=%2Fcom.ibm.psc.doc_1.1.0%2Fpsc_ic-homepage.html

v Windows:
%INSTALL%/JazzSM/profile/bin/stopServer.bat server1
%INSTALL%/JazzSM/profile/bin/startServer.bat server1

Uninstalling the Netcool/Impact Self Service Dashboard widgets
How to uninstall the self service dashboard widgets feature from Jazz for Service
Management.

Before you begin

You must remove any dependencies on the Netcool/Impact self service dashboard
widgets from any existing pages or portlets in Jazz for Service Management. Then,
delete any instances of the Netcool/Impact dashboard widgets from the page or
portlets in Jazz for Service Management. For information about how to delete
pages or portlets see the IBM® Dashboard Application Services Hub online help.

Procedure
1. On the Dashboard Application Services Hub Server, use one of the following

commands to run the wsadmin tool:
v UNIX: %INSTALL%/JazzSM/profile/bin/wsadmin.sh
v Windows: %INSTALL%/JazzSM/profile/bin/wsadmin.bat

2. Run the following command to uninstall the Impact_SSD_Dashlet.war file.
$AdminApp update isc modulefile
{-operation delete -contenturi Impact_SSD_Dashlet.war }

3. If the wsadmin command succeeds without errors, run the following command
to save the changes:
$AdminConfig save

4. Use one of the following commands to restart the Dashboard Application
Services Hub Server.
v UNIX:

%INSTALL%/JazzSM/profile/bin/stopServer.sh server1
%INSTALL%/JazzSM/profile/bin/startServer.sh server1

v Windows:
%INSTALL%/JazzSM/profile/bin/stopServer.bat server1
%INSTALL%/JazzSM/profile/bin/startServer.bat server1

Editing an Input Form widget
The Input Form widget is a form control which can run Netcool/Impact policies
with user-defined runtime parameters. The Input Form widget dynamically
generates a form with a set of input fields which correspond to the runtime
parameters of the policy.

When you submit the form, the associated policy is run with runtime parameters
from the form input fields.

1. In the title bar, click the Edit options icon

and select Edit.
2. Choose the Netcool/Impact policy that you want to run. You can search for the

policy by completing the search field with either a full or partial name and
clicking Search. You can also view the complete list of available data sets by
clicking the Show All button in the center of the results panel.

3. Select that data set, and click the right arrow to show the Visualization
Settings page. In the Visualization Settings page, you can configure the button
title and Netcool/Impact policy parameters.

202 Netcool/Impact: Solutions Guide

4. In the Required Settings section, select the executePolicy option.
5. Optional. Select Optional Settings, add the name of the form to the Title field.

The title is also used for the label of the form submission button.
6. Optional. Configure Optional Dataset Parameters: You can also set default

values for any runtime parameters that are attached to the Netcool/Impact
policy. The Input Form widget populates the runtime parameter form with any
default values you set here.

7. Click OK to implement the changes, or Cancel to discard the changes.
8. On the dashboard, click the button on the widget to run the policy. The

runtime parameters are passed to the policy as policy runtime parameters. The
results are displayed in the widget.

Tip: In the Input Form, you can manually change the values in the form fields,
click the button, and run the policy again and show the results in the dashboard.

Editing a Button widget
The Button widget can be used in an Operator View to run a policy. You can edit
the Button widget to use the runtime parameters that are set by the policy that is
attached to the button.

1. In the title bar, click the Edit options icon

and select Edit.
2. Choose the Netcool/Impact policy that you want to run. You can search for the

policy by completing the search field with either a full or partial name and
clicking Search. You can also view the complete list of available data sets by
clicking the Show All button in the center of the results panel.

3. Select that data set, and click the right arrow to show the Visualization
Settings page. In the Visualization Settings page, you can configure the button
title and Netcool/Impact policy parameters.

4. In the Required Settings section, select the executePolicy option.
5. Optional. Select Optional Settings, add the name of the button to the Title

field. The title is also used for the label of the form submission button.
6. Optional. Configure Optional Dataset Parameters: You can also set default

values for any runtime parameters that are attached to the Netcool/Impact
policy.

7. Click OK to implement the changes, or Cancel to discard the changes.
8. On the dashboard, click the button on the widget to run the policy. The

runtime parameters are passed to the policy as policy runtime parameters. The
results are displayed in the widget.

Tip: To change the values of the runtime parameters, you must edit the Button
widget and change the parameters in the Visualization Settings page before you
run the policy again from the dashboard.

Configuring the Button widget to receive data from other widgets
The Button widget can receive data from other widgets. For example, in the
console you can create a wire between the Button widget and a table widget. Wires
are connections between widgets to share information and for opening pages in
context. When you click a row in the Table widget, the Button widget processes the
data. When you click the button on the Button widget, that data from the table
row is processed. The data is then sent on to the policy as runtime parameters.

Chapter 14. Working with the Netcool/Impact UI data provider 203

About this task

This example uses a Button widget and a table widget. You can use the same
process with a Button widget and any other widget.

Procedure
1. In Netcool/Impact, create a DB2 data source.

a. Enter NewDataSource in the Data Source Name field.
b. Enter the user name and password for the database.
c. Complete the other fields as required.
d. Save the data source.

2. Create a data type for the DB2 data source.
a. Enter NewDataType as the name and complete the required fields.
b. To ensure that the data type is compatible with the UI data provider, select

the UI data provider: enabled check box.
c. Select the key fields for the data type.
d. Save the data type.

3. Create the target policy.
a. In the Netcool/Impact policy editor, create a Netcool/Impact policy.
b. Define the following policy:

Log (“Executing IPL Impact Policy”);
filter = “SERVICEREQUESTIDENTIFIER = ” + inputParamID;
GetbyFilter (’NewDataType’, filter, false);

c. Save the policy, name it PolicyForButtonWidget.
4. Create the runtime parameter for the policy.

a. In the policy editor, click the Configure User Parameters icon to create the
runtime parameter.

b. Name the runtime parameter inputParamID.
c. Specify Long for the Format field.
d. Click OK.
e. Save the policy.

5. Create a page in the console.
a. Open the console.
b. To create a page, click Settings > New Page.
c. Enter a name for the page in the Page Name field.
d. Save the page.

6. Create a Button widget in the console.
a. Open the new page that you created.
b. Open the Impact widget folder, drag the Button widget into the content

area.
c. To configure the widget data, click the down arrow icon and click Edit. The

Select a data setwindow is displayed.
d. Select the data set. Select the PolicyForButtonWidget policy that you

created earlier.
e. The Visualization Settings UI is displayed. Click OK.
f. To save the button widget, click the Save button on the page toolbar.

7. Create a Table widget in the console.
a. Open the new page that you created.

204 Netcool/Impact: Solutions Guide

b. Drag the Table widget into the content area.
c. To configure the widget data, click it. Click the down arrow icon and click

Edit. The Select a dataset window is displayed.
d. Select the data set. Select the NewDataType data type that belongs to the

NewDataSource data source. The data type is only displayed after the
defined refresh interval. The default is 5 minutes.

e. The Visualization Settings UI is displayed. Click OK.
f. To save the Table widget, click Save on the page toolbar.

8. Create a Wire between the Button and Table widgets.
a. To open the Wires wizard, click the Show Wires button on the page toolbar.
b. Click the New Wire button.
c. On the Select Source Event for New Wire page, identify the Table widget in

the list of Available source events and select the NodeClickedOn event.
d. Click OK.
e. On the Select Target for New Wire page, select the Button widget from the

list of Available targets.
f. Click OK on the next two pages to create a wire between the Button and

Table widgets.

Results

When you click a row in the Table widget, a NodeClickedOn event is generated.
The Button widget processes the event by extracting the data for the clicked table
row. When you click the button on the Button widget, it runs the policy that is
configured in the widget. The data passes from the table row to the policy as
policy runtime parameters. The GetByFilter function runs and uses the runtime
parameter that is provided by the table row.

Reference topics
You can use custom URLs and the UI data provider to access data directly. You can
also customize the UI data provider and enable large data model support.

Large data model support for the UI data provider
You can use the UI data provider with large data models based on the supported
databases.

Large data model support is used to facilitate the integration of the UI data
provider with database tables that use filtering and paging to limit the number of
rows.

The following databases and associated data types are supported and large data
model integration is enabled by default:
v DB2
v Derby
v HSQLDB
v Informix
v MySQL
v MS-SQLServer
v Oracle
v PostgreSQL

Chapter 14. Working with the Netcool/Impact UI data provider 205

For information about how to enable and disable large data models see “Disabling
and enabling large data models.”

Restrictions
v Sybase databases and associated data types are not supported. You can limit the

data by using the input filters in the data type or in the widget.

Important: If you access a Netcool/OMNIbus or Sybase data type which has a
huge number of rows, for example more than 10,000 rows you can potentially
run out of memory. Out of memory issues can occur because all the rows of data
that are fetched from the database use the available heap memory that is
allocated by the Java virtual machine. If you plan to access large amounts of
data for a Netcool/OMNIbus or Sybase data type, consider increasing the heap
memory settings for the TIPProfile and ImpactProfile from their default values.
For information about changing heap memory settings, see the Memory status
monitoring section of the Administration Guide.

v If you want to integrate the UI data provider with large data models, you must
not use UIDPROWNUM as a field name in the Oracle or DB2 database. The AS
UIDPROWNUM field is added to the query for Oracle and DB2 databases. As a
result, this field is reserved for use by the query that is associated with these
types of databases.

v The MS-SQLServer database uses the first field of the data type in the query.
There are no reserved fields for this type of database.

v If pagination is enabled in Tivoli Integrated Portal or in the URL,
Netcool/Impact does not store this information in the memory. Instead,
Netcool/Impact retrieves the rows directly from the database to avoid any
adverse effects on performance and memory.

Disabling and enabling large data models
You can enable and disable the UI data provider so that it is not compatible with
large data models.

About this task

Large data model integration is enabled by default for the following databases:
v DB2
v Derby
v HSQLDB
v Informix®

v MySQL
v MS-SQLServer
v Oracle
v PostgreSQL

Procedure
1. To disable the integration of the UI data provider and large data models,

change impact.uidataprovider.largetablemodel=true to
impact.uidataprovider.largetablemodel=false in the server.props file.

Tip: If this parameter does not exist, you can add it to the server.props file.
2. Restart the GUI Server.

206 Netcool/Impact: Solutions Guide

Enabling and disabling the large data model for the Objectserver:

Large data model integration is disabled by default for the ObjectServer and is not
supported unless you use Netcool/OMNIbus version 7.4.0. fix pack 1. This fix
pack has functions that can be used to perform paging in the ObjectServer.

Before you begin

Before you begin this task, you must stop the GUI Server.

On UNIX operating systems, enter the following command in the command
prompt:
$IMPACT_HOME/bin/ewasGUIStartStop.sh stop
[-username adminuser -password adminpassword]

On Windows operating systems, you use the Services Extension in the Microsoft
Management Console. In the Services Extension window right-click Tivoli
Integrated Portal, and select Properties. In the Properties dialog box, click Stop,
and then click OK.

About this task

For information about Netcool/OMNIbus version 7.4.0. fix pack 1, see
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.netcool_OMNIbus.doc_7.4.0/omnibus/wip/welcome.htm.

Procedure

1. To enable the integration of the UI data provider and large data models for the
ObjectServer, change the property
impact.uidataprovider.largetablemodel.objectserver=false to
impact.uidataprovider.largetablemodel.objectserver=true in the
server.props file.
If the property does not exist, you can create it.

2. Restart the GUI Server.
v On UNIX systems, enter the following command at the command prompt:

$IMPACT_HOME/bin/ewasGUIStartStop.sh start
[-username adminuser -password adminpassword]

v On Windows systems, you use the Services Extension in the Microsoft
Management Console. In the Services Extension window right-click Tivoli
Integrated Portal, and select Properties. In the Properties dialog box, click
Start, and then click OK.

Tip: You can also use thestartServer.sh script in the $TIP_HOME/profiles/
TIPProfile/bin directory.

UI data provider customization
After you enable the UI data provider, you can customize it by changing the
refresh rate, initializing all SQL data items, and enabling multiple Netcool/Impact
clusters that access the same Tivoli Integrated Portal provider.

Chapter 14. Working with the Netcool/Impact UI data provider 207

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.4.0/omnibus/wip/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.4.0/omnibus/wip/welcome.htm

Refresh rate

You can configure how often the UI data provider is refreshed. This interval is set
to 5 minutes. To change this setting, add the following statement to the
server.props file that is in the IMPACT_HOME/etc/ folder:
impact.uidataprovider.refreshrate=<refresh_rate_in_miliseconds>

For example, add the following statement to change the refresh interval to 3
minutes:
impact.uidataprovider.refreshrate=180000

Initialization of SQL data items

You can configure Netcool/Impact so that the SQL data items are initialized during
startup by default. To do so, add the following to the server.props file:
impact.uidataprovider.sql.initializenodes=true

Restriction: This setting can have an adverse affect on performance and memory
usage. This restriction depends on the amount of data that is held by the data
type. This setting is disabled by default for this reason.

Enable multiple servers

Your deployment may include multiple UI data provider servers in a server cluster
that access the same Tivoli Integrated Portal provider. To integrate the UI data
provider with this type of deployment, you must configure the navigational model
load so that it regularly refreshes the data from each UI data provider server. To do
so, add the following statement to the server.props file:
impact.uidataprovider.refreshclusters=true

Character encoding

By default, Netcool/Impact uses UTF-8 character encoding to parse parameter
values and to send these values to the UI data provider. You change this setting if,
for example, you want to use Chinese characters alongside the UI data provider. To
change this setting, shut down your Tivoli Integrated Portal server and add the
following statement to the server.props file that is in the IMPACT_HOME/etc folder:
impact.uidataprovider.encoding=<charset>

Start your Tivoli Integrated Portal server. Netcool/Impact uses the encoding that is
defined in the charset variable to parse parameter values.

Disabling the UI data provider

By default, the UI data provider is enabled in the Tivoli Integrated Portal profile.
To disable the UI data provider, add the following statement to the server.props
file in the IMPACT_HOME/etc folder. You must shut down the GUI Server before you
add the statement.
impact.uidataprovider.enable=false

Note: In a split installation, add the statement to the server.props file in the Tivoli
Integrated Portal server.

To complete the change, restart the GUI Server.

208 Netcool/Impact: Solutions Guide

Translating date filters for connected databases

Netcool/Impact must translate filter values from the console into a format that is
compatible with the queries used for the various databases. The translation is
required because the console uses milliseconds as the generic format to send dates.
This translation is controlled by the impact.uidataprovider.dateformat property in
the server.props file in the IMPACT_HOME/etc folder. The default pattern is
yyyy-MM-dd HH:mm:ss.SSS. For example, if you filter for January 1st 2012,
Netcool/Impact translates the filter value into 2012-01-01 00:00:00.000.

To change the default pattern, change the impact.uidataprovider.dateformat
property in the server.props file in the IMPACT_HOME/etc folder.

Connection Timeout

You can configure how long the UI data provider waits for a successful connection.
This property is set in milliseconds and the default is set to 60 seconds. To change
this setting, add the following statement to the server.props file that is in the
IMPACT_HOME/etc/ folder:

impact.uidataprovider.gethttp.conntimeout=<connection_timeout_in_miliseconds>

For example, add the following statement to change the connection timeout to 3
minutes:

impact.uidataprovider.gethttp.conntimeout=180000

Response Timeout

You can configure how long the UI data provider waits for a successful response.
This property is set in milliseconds and the default is set to 100 seconds. To change
this setting, add the following statement to the server.props file that is in the
IMPACT_HOME/etc/ folder:

impact.uidataprovider.gethttp.sotimeout=<response_timeout_in_miliseconds>

For example, add the following statement to change the response timeout to 3
minutes:

impact.uidataprovider.gethttp.sotimeout=180000

Accessing the Netcool/Impact UI data provider
You can use URL to access the UI data provider data provided by Netcool/Impact.

Procedure

Use the following URL to access the Netcool/ImpactUI data provider
https:/<hostname>:<port>/ibm/tivoli/rest/providers/
providername

hostname is the machine where the Tivoli Integrated Portal is running.
port is the https port of the Tivoli Integrated Portal, the default value is 16311

Note:

Chapter 14. Working with the Netcool/Impact UI data provider 209

The Netcool/ImpactUI data provider registers the name Impact_NCICLUSTER by
default. If you registered another cluster name during installation, the UI data
provider registers this name as Impact_<clustername>.

Example

For example, you can use the following URL to access the UI data provider:
https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER

Accessing data sources from a UI data provider
You can use a URL to access the data sources that Netcool/Impact provides when
it is functioning as a UI data provider.

Procedure

Use the following URL to access the data sources:
https://<hostname>:<port>/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/<datasourcename>

Example

If you configure the defaultobjectserver data source in Netcool/Impact to point
to an Netcool/OMNIbus installation, you use the following URL to access it:
https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/defaultobjectserver

Accessing data sets from a UI data provider
You use a URL to access data sets provided by a UI data provider. The data sets
provided by the UI data provider can be based on the SQL, Internal, or SNMP
data types.

Procedure

Use the following URL to access data sets provided by the UI data provider:
https://<hostname>:<port>/ibm/tivoli/rest/providers/Impact_NCICLUSTER
/datasources/<datasourceId>/datasets

This URL returns the data sets that belong to a data source.
Use the following URL to access a specific data set:
https://<hostname>:<port>/ibm/tivoli/rest/providers/Impact_NCICLUSTER
/datasources/<datasourceId>/datasets/<datasetId>

Use the following URL to access the rows in the tables:
https://<hostname>:<port>/ibm/tivoli/rest/providers/Impact_NCICLUSTER
/datasources/<datasourceId>/datasets/<datasetId>/items

Note: If the key field in the table is a unique identifier, this URL returns all the
rows. If the table contains key fields that are not unique identifiers, these rows are
not returned.

Example

You use the following URL to access data sets from the defaultobjectserver data
source:

210 Netcool/Impact: Solutions Guide

https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/defaultobjectserver/datasets

You create the following data types for the defaultobjectserver data source:
v The ALERTS data type points to alerts.status
v The JOURNALS data type points to alerts.journals

You use the following URL to access the ALERTS data set:
https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/defaultobjectserver/datasets/ALERTS

You use the following URL to access item ID for the ALERTS data set:
https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/defaultobjectserver/datasets/ALERTS/items

When you create a data type in Netcool/Impact, you designate at least one field as
the key field. In this example, you chose Identifier as the key field for the ALERTS
data set. You use the following URL to access data where the identifier is
Impact123:
https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/defaultobjectserver/datasets/ALERTS/items/Impact123

You use the following URL to access the Serial and Severity properties for this
event:
https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/defaultobjectserver/datasets/ALERTS/items/
Impact123?properties=Serial,Severity

You use the following URL to access the data for all columns for the row where
the identifier is Impact123:
https://example.com:16311/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/defaultobjectserver/datasets/ALERTS/items/Impact123?properties=all

Known issues with JavaScript and the UI data provider
How to resolve known issues with user output parameters in a JavaScript policy
and the UI data provider.

When you expose a user output parameter inside a JavaScript policy, the user
output parameter data when queried from the UI data provider might be blank. To
resolve this issue, certain objects inside the JavaScript policy must be deleted,
including JavaScript functions and Java objects, typically at the end of the function
or policy.

For example, the following JavaScript function must be deleted before the user
output parameters are successfully returned from the UI data provider.
function myFunction() {
//.....
}
delete myFunction;

Additionally, any Java objects that are created inside the JavaScript policy must be
deleted as well. For example,
var myString = NewJavaObject("java.lang.String", ["myString"]);
//.....
delete myString;

Chapter 14. Working with the Netcool/Impact UI data provider 211

If the Java object contains the information that is to be used in a user output
parameter. The value of the Java object must be stored by using a Netcool/Impact
policy function to convert the Java object to the correct variable type.
var myString = NewJavaObject("java.lang.String", ["myString"]);
//.....
var outputString = String(myString);
delete myString;

If the variable is returned from an invocation of a function or call, you must delete
that object as well.

Running policies and accessing output parameters
You can use a URL to run a policy and to make the output parameters of that
policy such as variables, objects, or variables output by the GetByFilter function
available to the UI data provider.

Procedure

To run a policy and make the output parameters available to the UI data provider,
add executePolicy=true to the following URL:
https://<hostname>:<port>/ibm/tivoli/rest/providers/Impact_NCICLUSTER/
datasources/IMPACT_POLICY_<policyname>/datasets/
<policyname>_policy_variables/items?executePolicy=true

Example

You can use a URL to run a policy and to make the output parameters available to
the UI data provider. You create a policy called Test_Policy.

You add executePolicy=true to the following URL to run the Test_Policy policy
and make the output parameters available to the UI data provider:
https://example.com:16311/ibm/tivoli/rest/providers/
Impact_NCICLUSTER/datasources/IMPACT_POLICY_Test_Policy/
datasets/Test_Policy_policy_variables/items?executePolicy=true

UI data provider URLs
Use the following URLs to access Netcool/Impact data that has been made
available to the UI data provider.

Access the UI data provider:
https:/<hostname>:<port>/ibm/tivoli/rest/providers/<providername>

Access a data source:
https://<hostname>:<port>/ibm/tivoli/rest/providers/
Impact_NCICLUSTER/datasources/<datasourcename>

Access all the data types that belong to a particular data source:
https://<hostname>:<port>/ibm/tivoli/rest/providers/
Impact_NCICLUSTER/datasources/<datasourceId>/datasets

Access a specific data set:
https://<hostname>:<port>/ibm/tivoli/rest/providers/
Impact_NCICLUSTER/datasources/<datasourceId>/datasets/<datasetId>

Access the rows in a data base table
https://<hostname>:<port>/ibm/tivoli/rest/providers/
Impact_NCICLUSTER/datasources/<datasourceId>/datasets/<datasetId>/
items

212 Netcool/Impact: Solutions Guide

Run a policy and make the output parameters available to the UI data provider:
https://<hostname>:<port>/ibm/tivoli/rest/providers/
Impact_NCICLUSTER/ datasources/IMPACT_POLICY_<policyname>/datasets/
<policyname>_policy_variables/items?executePolicy=true

Chapter 14. Working with the Netcool/Impact UI data provider 213

214 Netcool/Impact: Solutions Guide

Chapter 15. Working with OSLC for Netcool/Impact

You can use Open Services for Lifecycle Collaboration (OSLC) for Netcool/Impact
to integrate Netcool/Impact with other OSLC providers and clients.
Netcool/Impact also functions as a client of OSLC data. You can use these
capabilities to integrate Netcool/Impact with compatible products and data.

Netcool/Impact 6.1.1.5 contains an implementation of the Open Services for
Lifecycle Collaboration (OSLC) Core Specification version 2.0. For more
information about OSLC, see the OSLC Core Specification (http://open-
services.net/bin/view/Main/OslcCoreSpecification).

Netcool/Impact does not support delegated UI dialogs or creation factories.
Netcool/Impact supports only the RDF/XML representation of OSLC and the
following aspects of the OSLC Core Specification v2:
v OSLC Service Provider
v OSLC Query Capability
v OSLC Resource Shape
v OSLC Resource

Usage Scenarios

Netcool/Impact is able to act as an OSLC provider and an OSLC client. You can
use Netcool/Impact as a generic OSLC adapter for other OSLC and non-OSLC
service providers.

Response Formats

Netcool/Impact uses the RDF/XML format for all OSLC responses, as required by
the OSLC Core Specification v2.

Important: When viewed in some web browsers, such as Mozilla Firefox, the raw
RDF/XML is automatically translated into the abbreviated RDF/XML format,
which omits blank nodes. For more information, see the RDF/XML Syntax
Specification (http://www.w3.org/TR/REC-rdf-syntax/#section-Syntax-blank-
nodes)

The raw RDF/XML and the abbreviated version are semantically identical. You can
use Internet Explorer, Mozilla Firefox, the Netcool/Impact GetHTTP function, or the
Linux curl utility to retrieve the raw XML/RDF.

Note: If you are working with the Netcool/Impact GUI in the Mozilla Firefox
browser and you simultaneously open a second instance to view an OSLC URL,
the system logs you out of the first instance. To prevent this problem, you must
create a second profile in Mozilla Firefox for viewing OSLC URLs. For more
information about how to do so, see the help section about profiles on the Mozilla
website (http://support.mozilla.org/en-US/kb/profile-manager-create-and-
remove-firefox-profiles).

© Copyright IBM Corp. 2006, 2016 215

http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://www.w3.org/TR/REC-rdf-syntax/#section-Syntax-blank-nodes
http://www.w3.org/TR/REC-rdf-syntax/#section-Syntax-blank-nodes
http://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles
http://support.mozilla.org/en-US/kb/profile-manager-create-and-remove-firefox-profiles

Jazz for Service Management

OSLC requires Netcool/Impact 6.1.1 or higher. OSLC also requires Jazz for Service
Management, which is bundled with Netcool/Impact 6.1.1. You use the installer
provided with Jazz for Service Management to install it separately.

Before you can use OSLC, you must install the Registry Service component of Jazz
for Service Management. For more information, see http://pic.dhe.ibm.com/
infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html

Introducing OSLC
Before you use OSLC for Netcool/Impact, read this information about the specifics
of this implementation.

The following graphic outlines an example of a typical system architecture for
OSLC:

The installation that is illustrated in the graphic shows how Netcool/Impact uses
the registry services from Jazz for Service Management to provide hover preview
support to TBSM. TBSM retrieves the list of service providers for a resource from
the server where the Registry Services component of Jazz for Service Management
is installed. TBSM connects to specified service provider in the backend of
Netcool/Impact where the service provider was created. The backend is connected

216 Netcool/Impact: Solutions Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html

to the data sources and policies that provide data and generate the hover preview
window information, including the URL used to retrieve the hover preview
content. The URL can be the frontend of Netcool/Impact which uses the operator
views to render the actual content inside the hover preview window.

OSLC resources and identifiers
OSLC for Netcool/Impact follows the OSLC specifications with regards to OSLC
resources and identifiers. However, there are some important things to consider
before you start working on OSLC for Netcool/Impact.

Following the OSLC specification, the URIs generated by Netcool/Impact in OSLC
documents are opaque. The only valid URIs are those URIs that are discovered
through an OSLC service provider registry or from a previous OSLC document.

For example, if the URI for a resource that is called Person is http://<server>/
person it cannot be assumed that http://<server>/dog is the correct URI for a
resource called Dog. This document provides URIs as examples but these do not
imply functioning URIs on any particular system.

All Netcool/Impact URIs use the http:// or https:// scheme.

As URIs are opaque, it follows that the http://<server>/ resource and the
https://<server>/ resource are two different resources.

Although all URIs can use the http or https scheme, not all URIs can be resolved
as an HTTP resource.

Where possible, the term URI is used to indicate identifiers, which may or may not
resolve to a particular document, and URLs to refer to resources which resolve to a
document.

You can use HTTP or HTTPS authentication for security. If you use HTTP basic
authentication, the security credentials are available on the network as clear text.
HTTPS is the preferred method as the security credentials are not available as clear
text.

OSLC roles
You use the bsmAdministrator and impactOSLCDataProviderUser roles to regulate
access to the OSLC service provider.

The bsmAdministrator role is assigned to your Netcool/Impact administrator, who
is, in most cases, the Tivoli Integrated Portal administrator.

To add users to roles, use the $IMPACT_HOME/bin/jython/mapRole.py script. To add
users or groups to the impactOSLCDataProviderUser role, use the following
command:
wsadmin -lang jython -f mapRole.py -A NCI -r impactOSLCDataProviderUser
-g “group1|group2|group3” -u "user1|user2|user3"

Note: You must use a single script to add the user to the role and to add the role
to the group. If you use separate scripts, the first mapping is overwritten by the
second.

If you use file based authentication for your users and groups, the users and
groups that are assigned to the OSLC role are not replicated to the Impact Server

Chapter 15. Working with OSLC for Netcool/Impact 217

automatically. You must add these roles manually. To add the users and groups to
the Impact Server, use the WebSphere Application Server administration console
that is available at the following URL:
https://<Impact_server_host>:9086/ibm/console/logon.jsp

If you use the Object server or Lightweight Directory Access Protocol (LDAP) to
authenticate your users and groups, the users and groups that are assigned to the
OSLC role are replicated to the Impact Server automatically

If you change the current user registry, you must restart the Netcool/Impact profile
WebSphere server.

Example

You use the following command to add the oslcuser user to the
impactOSLCDataProviderUser role for a Linux operating system:
/opt/IBM/tivoli/tipv2/profiles/ImpactProfile/bin/wsadmin.sh -lang jython
-f /opt/IBM/tivoli/impact/bin/jython/mapRole.py
-A NCI -r impactOSLCDataProviderUser -u "tipadmin|oslcuser"

Working with data types and OSLC
You can use the following information to integrate the Netcool/Impact OSLC
provider and data types.

You cannot use a display name that contains special characters with OSLC. You
must enter a display name that does not contain special characters. To edit the
display name:
1. Open Netcool/Impact and select System Configuration > Event Automation >

Data Model.
2. Click the data source that the data type belongs to.
3. Select the row that contains the display name that uses special characters and

click the Edit Current Row icon.
4. Replace the special characters in the display name and save your changes.

Accessing Netcool/Impact data types as OSLC resources
To allow Netcool/Impact to access a data type as an OSLC resource, you must add
the data type to the NCI_oslc.props file in <IMPACT_HOME>/etc/.

About this task

In this scenario, the OSLC resources that are returned by a query are
Netcool/Impact data items, which are rows from the underlying database.

Procedure
1. Add a property for each Netcool/Impact data type that you want to make

available as OSLC resources to the NCI_oslc.props file in <IMPACT_HOME>/etc/.
NCI is the default name of the Impact Server. You add the property in the
following format:
oslc.data.<pathcomponent>=<datatypename>

where <pathcomponent> is the path component of the URI that you want to use,
and <datatypename> is the name of the data type you want to use.

218 Netcool/Impact: Solutions Guide

For example, if you add the oslc.data.staff=Employees to the properties file,
you can use the following URL to access the Employees data type:
http://example.com:9080/NCI_NCICLUSTER_oslc/data/staff

where NCI is the default Impact Server name and NCICLUSTER is the
Netcool/Impact cluster name.

2. Restart the Impact Server.

Example

The following example shows how to create a data type for a DB2 table and how
to add the information to the NCI_oslc.props file.

In this example, the DB2 table has information for a table called People:
db2 => describe table People

Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
ID SYSIBM INTEGER 4 0 Yes
FIRST_NAME SYSIBM VARCHAR 255 0 Yes
LAST_NAME SYSIBM VARCHAR 255 0 Yes
COMPANY SYSIBM VARCHAR 255 0 Yes
BIRTHDAY SYSIBM DATE 4 0 Yes

1. Create a Netcool/Impact data type which represents the information in the DB2
table and add the information as fields to the data type:
a. In the navigation tree, expand System Configuration > Event Automation

> Data Model, to open the Data Model tab.
b. Select the data source for which you want to create a data type, right-click

the data source and click New Data Type.
c. In the Data Type Name field, give the data type a name, for example

Employees.
d. Select the Data Source Name from the list menu, in this example DB2.
e. Select the Enabled check box to activate the data type so that it is available

for use in policies.
f. Select the Base Table name from the list menu.
g. Click Refresh to add the fields from the DB2 example table to the data type.
h. Select at least one Key Field. Key fields are fields whose value or

combination of values can be used to identify unique data items in a data
type.

i. Click Save.
2. Specify the data type in the NCI_oslc.props file, for example

oslc.staff=Employees.
3. Restart the Impact Server.

Retrieving OSLC resources that represent Netcool/Impact data
items

You use OSLC resource collections to represent Netcool/Impact data items. You
use a URL to retrieve these resource collections.

Before you begin

Use only data types that conform with standard database best practices. The key
fields must be unique, non-NULL, and they must not change over time. If the key

Chapter 15. Working with OSLC for Netcool/Impact 219

values change, the OSLC URI also changes.

Procedure

Use a URL like the following one to retrieve the OSLC resource collections that
represent the data items:
http://<server>:<port>/NCICLUSTER_NCI_oslc/data/<datatype>

where <datatype> is defined in the NCI_oslc.props file.

Results

Netcool/Impact maps the rows in the database to OSLC resources and it maps
columns to OSLC resource properties. The URL for each data item uses the key
values in the form of HTTP matrix parameters to uniquely identify the data item.
The key values are defined in the Netcool/Impact data type configuration. For
example, a data item with multiple keys would result in a URI like this one:
http://<server>:<port>/NCICLUSTER_NCI_oslc/data/people/item;
<key1=value1>;<key2=value2>

Each non-NULL value in the database is represented as an RDF triple that consists
of the data item, the value, and the property that is derived from the column
name. NULL values are represented in OSLC by the absence of the property that is
derived from the column name.

Example

For example, you can use the following URL to access the employee data type that
is configured to use the people path component:
http://example.com:9080/NCICLUSTER_NCI_oslc/data/people/

The URL returns a collection of OSLC resources that are based on the rows from
the database table. The following example shows the results for two data items
that belong to the employee data type:
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:people="http://jazz.net/ns/ism/event/impact#data/people/"
xmlns:impact="http://jazz.net/ns/ism/event/impact#/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:oslc="http://open-services.net/ns/core#">

<oslc:ResponseInfo rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/people">
<rdfs:member>

<people:people rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc
/data/people/item;ID=2">

<people:ID>2</people:ID>
<people:FIRST_NAME>George</people:FIRST_NAME>
<people:LAST_NAME>Friend</people:LAST_NAME>

</people:people>
</rdfs:member>
<rdfs:member>

<people:people rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc
/data/people/item;ID=1">

<people:FIRST_NAME>Michael</people:FIRST_NAME>
<people:LAST_NAME>Ryan</people:LAST_NAME>
<people:ID>1</people:ID>

</people:people>

220 Netcool/Impact: Solutions Guide

</rdfs:member>
<oslc:totalCount>2</oslc:totalCount>

</oslc:ResponseInfo>
</rdf:RDF>

Displaying results for unique key identifier
Each resource that is returned is assigned a unique key that identifies the resource
in the results and has certain information associated with it. You can use a URL to
display the information associated with a specific identifier.

Example

You use the following URL to display the information associated with a particular
resource key, in this case 1010:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/example/
myGetFilter/item;ID=1010

This URL returns the following results:
<rdf:RDF>
<examplePolicy:myGetFilter rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/
policy/example/myGetFilter/item;ID=1010">

<myGetFilter:NAME>Brian Doe</myGetFilter:NAME>
<myGetFilter:STARTED>1980-08-11</myGetFilter:STARTED>
<myGetFilter:MANAGER>1001</myGetFilter:MANAGER>
<myGetFilter:ID>1010</myGetFilter:ID>
<myGetFilter:DEPT>Documentation</myGetFilter:DEPT>

</examplePolicy:myGetFilter>
</rdf:RDF>

OSLC resource shapes for data types
The OSLC resource shape represents the structure of the SQL schema that the
Netcool/Impact data type is using. Netcool/Impact automatically produces an
OSLC resource shape for the specified data types, extracting the data from the
underlying database table.

Table 67. Mapping to OSLC Resource Shape properties

OSLC Resource Shape parameters Maps to Netcool/Impact

dcterms:title Data type name

oslc:describes http://jazz.net/ns/ism/events/impact/
data/<pathcomponent>

Table 68. OSLC properties generated by the Netcool/Impact data type parameters

OSLC property Netcool/Impact data type

oslc:readOnly Always 'true'

oslc:valueType For more information, see the Table 69 on
page 222.

dcterms:title Column display name

oslc:propertyDefinition http://jazz.net/ns/ism/events/impact/
data/<pathcomponent>#<columnname>

oslc:occurs oslc:ZeroOrOne

oslc:name Column name

dcterms:description Column description

Chapter 15. Working with OSLC for Netcool/Impact 221

Table 69. OSLC value type mapping:

Netcool/Impact column types OSLC value types

String http://www.w3.org/2001/XMLSchema#string

Integer, Long http://www.w3.org/2001/XMLSchema#integer

Date, Timestamp http://www.w3.org/2001/
XMLSchema#dateTime

Float http://www.w3.org/2001/XMLSchema#float

Double http://www.w3.org/2001/XMLSchema#double

Boolean http://www.w3.org/2001/XMLSchema#boolean

Anything else http://www.w3.org/2001/XMLSchema#string

Viewing the OSLC resource shape for the data type
The OSLC resource shape for a data type is displayed in the oslc:ResourceShape
property.

Example

The following example contains the OSLC resource shape for the Employees data
type that was created for a DB2 table that is called People in the abbreviated RDF
format.

The resource URI is as follows:
http://<host>:9080/NCICLUSTER_NCI_oslc/data/resouceShapes/staff

The URI returns the following RDF:
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:oslc="http://open-services.net/ns/core#">
<oslc:ResourceShape rdf:about=
"http://<host>:9080/NCICLUSTER_NCI_oslc/data/resourceShapes/staff">
<dcterms:title>Employees/dcterms:title>
<oslc:property>

<oslc:Property>
<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>
<dcterms:title>LAST_NAME</dcterms:title>

<oslc:propertyDefinition rdf:resource=
"http://jazz.net/ns/ism/events/impact/data/staff/LAST_NAME"/>

<oslc:occurs rdf:resource=
"http://open-services.net/ns/core#Exactly-one"/>

<oslc:name>LAST_NAME</oslc:name>
<dcterms:description>LAST_NAME</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property>

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer"/>
<dcterms:title>ID</dcterms:title>
<oslc:propertyDefinition rdf:resource=

222 Netcool/Impact: Solutions Guide

"http://jazz.net/ns/ism/events/impact/data/staff/ID"/>
<oslc:occurs rdf:resource=

"http://open-services.net/ns/core#Exactly-one"/>
<oslc:name>ID</oslc:name>
<dcterms:description>ID</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property>
<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>
<dcterms:title>FIRST_NAME</dcterms:title>
<oslc:propertyDefinition rdf:resource=

"http://jazz.net/ns/ism/events/impact/data/staff/FIRST_NAME"/>

<oslc:occurs rdf:resource=
"http://open-services.net/ns/core#Exactly-one"/>

<oslc:name>FIRST_NAME</oslc:name>
<dcterms:description>FIRST_NAME</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property>
<oslc:readOnly>true</oslc:readOnly>

<oslc:valueType rdf:resource=
"http://www.w3.org/2001/XMLSchema#string"/>

<dcterms:title>COMPANY</dcterms:title>
<oslc:propertyDefinition rdf:resource=

"http://jazz.net/ns/ism/events/impact/data/staff/COMPANY"/>
<oslc:occurs rdf:resource=

"http://open-services.net/ns/core#Exactly-one"/>
<oslc:name>COMPANY</oslc:name>
<dcterms:description>COMPANY</dcterms:description>

</oslc:Property>

</oslc:property>
<oslc:property>

<oslc:Property>
<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource=

"http://www.w3.org/2001/XMLSchema#dateTime"/>
<dcterms:title>BIRTHDAY</dcterms:title>
<oslc:propertyDefinition rdf:resource=

"http://jazz.net/ns/ism/events/impact/data/staff/BIRTHDAY"/>
<oslc:occurs rdf:resource=

"http://open-services.net/ns/core#Exactly-one"/>

<oslc:name>BIRTHDAY</oslc:name>
<dcterms:description>BIRTHDAY</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:describes rdf:resource=

"http://jazz.net/ns/ism/events/impact/data/staff"/>
</oslc:ResourceShape>

</rdf:RDF>

Configuring custom URIs for data types and user output
parameters

Netcool/Impact can act as a proxy to non-OSLC systems. To facilitate this function,
you can use Netcool/Impact to represent data from a database as OSLC resources.

Chapter 15. Working with OSLC for Netcool/Impact 223

About this task

You use customized URIs to represent the data type columns. You need to add
these customized URIs to the OSLC configuration file to facilitate the mapping.

Restriction:

All the namespace URIs that you specify must include http. You cannot use https.

Procedure

Add the following statement to the NCI_oslc.props file to specify a particular Type
URI for a data type:
oslc.data.<path>.uri=<uri>

Optionally, you can add the following statement to specify a column name:
oslc.data.<path>.<columnname>.uri=<uri>

You can also add the following statement to specify a particular prefix for a
namespace:
oslc.data.<path>.namespaces.<prefix>=<uri>

If you do not specify a prefix, the RDF that is returned automatically shows the
generated prefix for the namespace.

Example

The following code example demonstrates how an employee table can be
represented in a friend of a friend (FOAF) specification by adding the following
statements to the NCI_oslc.props file:
oslc.data.staff=Employees
oslc.data.staff.uri=http://xmlns.com/foaf/0.1/Person
oslc.data.staff.NAME.uri=http://xmlns.com/foaf/0.1/name
oslc.data.staff.BIRTHDAY.uri=http://xmlns.com/foaf/0.1/birthday
oslc.data.staff.PHOTO.uri=http://xmlns.com/foaf/0.1/img
oslc.data.staff.STAFFPAGE.uri=http://xmlns.com/foaf/0.1/homepage
oslc.data.staff.EMAIL.uri=http://xmlns.com/foaf/0.1/mbox

When the user queries the OSLC resource http://example.com:9080/
NCICLUSTER_NCI_oslc/data/staff/jdoe, the following RDF is returned.

Note: The example RDF is an approximation. Also, as the user did not specify the
prefix and the namespace, the RDF automatically shows the generated prefix for
the namespace. In this example, the namespace is j.0 and the prefix is
http://xmlns.com/foaf/0.1/.
<?xml version="1.0"?>
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:j.0="http://xmlns.com/foaf/0.1/"
xmlns:impact="http://jazz.net/ns/ism/events/impact#/"
xmlns:oslc="http://open-services.net/ns/core#"">
<j.0:Person rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/data/staff/jdoe"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
<j.0:name>John Doe</foaf:name>
<j.0:homepage rdf:resource="http://example.com" />
<j.0:mbox rdf:resource="john.doe@example.com" />

224 Netcool/Impact: Solutions Guide

<j.0:img rdf:resource="http://example.com/images/jdoe.jpg"/>
<j.0:birthday>19770801</foaf:birthday>
</foaf:Person>
</rdf:RDF>

The following code example demonstrates how to specify a particular prefix for a
namespace. First, you specify the prefix and the namespace:
oslc.data.staff.namespaces.foaf=http://xmlns.com/foaf/0.1/

When the user queries the OSLC resource http://example.com:9080/
NCICLUSTER_NCI_oslc/data/staff/jdoe, the following RDF is returned.

Note: The example RDF is an approximation.
<?xml version="1.0"?>
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:impact="http://jazz.net/ns/ism/events/impact#/"
xmlns:oslc="http://open-services.net/ns/core#"">
<foaf:Person rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/data/staff/jdoe"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
<foaf:name>John Doe</foaf:name>
<foaf:homepage rdf:resource="http://example.com" />
<foaf:mbox rdf:resource="john.doe@example.com" />
<foaf:img rdf:resource="/images/jdoe.jpg" />
<foaf:birthday>19770801</foaf:birthday>
</foaf:Person>
</rdf:RDF>

Working with the OSLC service provider
To allow other applications that are OSLC consumers to use OSLC data from
Netcool/Impact, you must create the OSLC service provider, register the service
provider with the Registry Service provided by Jazz for Service Management, and
register the OSLC resources with the OSLC service provider.

To allow other applications that are OSLC consumers to use OSLC data from
Netcool/Impact, you must complete the following tasks:
1. Create the OSLC service provider. See “Creating OSLC service providers in

Netcool/Impact” on page 226
2. Register the OSLC service provider with the Registry Service provided by Jazz

for Service Management. See “Registering OSLC service providers with
Netcool/Impact” on page 228

3. Register the OSLC resources with the OSLC service provider. See “Registering
OSLC resources” on page 229

The Registry Service is an integration service that is part of the Jazz for Service
Management product. The Registry Service contains two directories, the Provider
registry and the Resource registry. As part of the implementation of OSLC for
Netcool/Impact, you must register the OSLC service provider and resources with
the Resource registry.

For more information about the Registry Service and Jazz for Service Management,
see http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/
com.ibm.psc.doc_1.1.0/psc_ic-homepage.html.

Chapter 15. Working with OSLC for Netcool/Impact 225

http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html

If you are registering the OSLC resources with the Registry Service provided by
Jazz for Service Management, you need use resources and RDF models that match
the specifications that are defined in the common resource type vocabulary
(CRTV). For more information, see the section about the common resource type
vocabulary in the Registry Services guide (https://www.ibm.com/
developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/
W8b1151be2b42_4819_998e_f7de7db7bfa2/page/Milestone%20documentation).

The examples in this documentation use the namespace crtv. To integrate the
Netcool/Impact OSLC service provider with the Registry Service provided by Jazz
for Service Management, you must use the crtv namespace. If you do not want to
integrate the OSLC service provider with the Registry Service provided by Jazz for
Service Management, you must change the namespace. For more information about
how to define a custom namespace, see “Configuring custom URIs for data types
and user output parameters” on page 223.

Creating OSLC service providers in Netcool/Impact
Before you can use Netcool/Impact to register OSLC resources with the registry
service provided by Jazz for Service Management, you must create an OSLC
service provider in Netcool/Impact. To create an OSLC service provider, update
the NCI_oslc.props configuration file.

About this task

The service provider definition is based on the OSLC resource collection that it is
associated with. An OSLC resource collection can share a single provider or it can
use multiple providers.

While you can use RDF policy functions to manually create the service provider,
generally you use Netcool/Impact to generate a service provider automatically.

Procedure
1. To define a service provider, add the following statement to the NCI_oslc.props

configuration file:
oslc.<type>.<path>.provider=<provider_name>
oslc.provider.<provider_name>.title=<title>
oslc.provider.<provider_name>.description=<description>

For example:
oslc.data.computer=RESERVATION
oslc.data.computer.provider=provider01
...
oslc.provider.provider01.title=Customer-x Product-y OSLC Service Provider
oslc.provider.provider01.description=Customer-x Product-y OSLC Service Provider

2. OSLC resources can share an OSLC service or they can use different OSLC
services. This is controlled by the specified domain name. To specify a domain
and a title for a resource, add the following statement to the NCI_oslc.props
configuration file:
oslc.<type>.<path>.provider.domain=<domain_URI>
oslc.<type>.<path>.provider.title=<title>

For example:

226 Netcool/Impact: Solutions Guide

https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/W8b1151be2b42_4819_998e_f7de7db7bfa2/page/Milestone%20documentation
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/W8b1151be2b42_4819_998e_f7de7db7bfa2/page/Milestone%20documentation
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/W8b1151be2b42_4819_998e_f7de7db7bfa2/page/Milestone%20documentation

oslc.data.computer=RESERVATION
...
oslc.data.computer.provider=provider01
oslc.data.computer.provider.domain=http://domainx/
oslc.data.computer.provider.title=Computer Title

If you specify the same service provider and domain name for two OSLC
resources, both resources share a single OSLC service. If two resources use the
same service provider but have different domains, the resources use different
OSLC services. If no domain is specified, then the system uses the default
Netcool/Impact namespace URI for this path.

3. Use this URL to view the service providers:
https://<server>:9081/NCICLUSTER_NCI_oslc/provider

The results are returned as an RDF. For example:
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:oslc="http://open-services.net/ns/core#">

<rdf:Description rdf:about="https://<server>:9081/NCICLUSTER_NCI_oslc/
provider">

<rdfs:member>
<oslc:ServiceProvider rdf:about="https://<server ip>:9081/

NCICLUSTER_NCI_oslc/provider/provider02">
<oslc:service>
<oslc:Service>

<oslc:queryCapability>
<oslc:QueryCapability>

<dcterms:title>Query Capability - http://policy.js/xmlns/
directSQL</dcterms:title>

<oslc:resourceType rdf:resource="http://policy.js/xmlns/
directSQL"/>

<oslc:resourceShape rdf:resource="https://<server ip>:9081/
NCICLUSTER_NCI_oslc/policy/resourceShapes/testBry/myDirectSQL1"/>

<oslc:queryBase rdf:resource="https://<server ip>:9081/
NCICLUSTER_NCI_oslc/policy/testBry/myDirectSQL1"/>

</oslc:QueryCapability>
</oslc:queryCapability>
<oslc:domain rdf:resource="http://domainy/"/>

</oslc:Service>
</oslc:service>

</oslc:ServiceProvider>
</rdfs:member>
<rdfs:member>

<oslc:ServiceProvider rdf:about="https://<server ip>:9081/
NCICLUSTER_NCI_oslc/provider/provider01">

<dcterms:title>Customer-x Product-y OSLC Service Provider
</dcterms:title>

<dcterms:description>Customer-x Product-y OSLC Service Provider
</dcterms:description>

<oslc:service>
<oslc:Service>

<oslc:queryCapability>
<oslc:QueryCapability>

<dcterms:title>Query Capability - http://jazz.net/ns/ism/events/
impact/data/managers</dcterms:title>

<oslc:resourceType rdf:resource="http://jazz.net/ns/ism/
event/impact/data/managers"/>

<oslc:resourceShape rdf:resource="https://<server ip>:9081/
NCICLUSTER_NCI_oslc/data/resourceShapes/managers"/>

<oslc:queryBase rdf:resource="https://<server ip>:9081/
NCICLUSTER_NCI_oslc/data/managers"/>

</oslc:QueryCapability>

Chapter 15. Working with OSLC for Netcool/Impact 227

</oslc:queryCapability>
<oslc:queryCapability>

<oslc:QueryCapability>
<dcterms:title>Managers Title</dcterms:title>

<oslc:resourceType rdf:resource="http://open-services.net/ns/
crtv#ComputerSystem"/>

<oslc:resourceShape rdf:resource="https://<server ip>:9081/
NCICLUSTER_NCI_oslc/data/resourceShapes/computer"/>

<oslc:queryBase rdf:resource="https://<server ip>:9081/
NCICLUSTER_NCI_oslc/data/computer"/>

</oslc:QueryCapability>
</oslc:queryCapability>
<oslc:domain rdf:resource="http://domainx/"/>

</oslc:Service>
</oslc:service>

</oslc:ServiceProvider>
</rdfs:member>

</rdf:Description>
</rdf:RDF>

Registering OSLC service providers with Netcool/Impact
To specify the registry server information in the NCI_oslc.props file, add the OSLC
registry server property to the NCI_oslc.props file.

Before you begin

Before you can specify the registry server information in the NCI_oslc.props file,
you must create a service provider. See “Creating OSLC service providers in
Netcool/Impact” on page 226.

Procedure
1. Specify the registry server, user name, and password. If the registry server does

not require a user name and password, you do not need to specify them.
To specify the registry server, add the following statement to the
NCI_oslc.props file:
impact.oslc.registry.server=<RegistryserverproviderregistryURL>

where <RegistryserverproviderregistryURL> is registry server provider's registry
URL.
To specify a registry server user, add the following statement to the
NCI_oslc.props file:
impact.oslc.registry.username=<OSLCproviderregistryserver
username>

To specify the registry server password, add the following statement to the
NCI_oslc.props file:
impact.oslc.registry.password=<OSLCproviderregistryserver
password>

where <OSLCproviderregistryserverpassword> is the password for the OSLC
provider registry server in encrypted form.
To locate the encrypted form of the password, run the nci_crypt program in
the impact/bin directory. For example:
nci_crypt password
{aes}DE865CEE122E844A2823266AB339E91D

In this example, the password parameter uses the entire string,
{aes}DE865CEE122E844A2823266AB339E91D, as the password.

228 Netcool/Impact: Solutions Guide

2. Restart Netcool/Impact to register the service providers. After the restart,
Netcool/Impact registers the service providers in the service registry. If the
service provider has been registered successfully, the resources that belong to
the service provider contain a new property, oslc:serviceProvider. The
oslc:serviceProvider property is displayed when you navigate to the URI that
contains the resources associated with the provider.
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:RESERVATION="http://jazz.net/ns/ism/events/impact/data/computer/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:crtv="http://open-services.net/ns/crtv#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/events/impact/">

<crtv:ComputerSystem rdf:about="http://<impact-server>:9080/NCICLUSTER_NCI_oslc/
data/computer/item;ID=4">

<crtv:serialNumber>IBM00003SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://<registry-server>:9080/oslc/

providers/6015"/>
<RESERVATION:RESERVED_DATE>2012-07-16</RESERVATION:RESERVED_DATE>
<RESERVATION:RESERVED_BY>Michael Morton</RESERVATION:RESERVED_BY>
<RESERVATION:RELEASE_DATE>2013-03-06</RESERVATION:RELEASE_DATE>
<RESERVATION:ID>4</RESERVATION:ID>

</crtv:ComputerSystem>
</rdf:RDF>

3. Register the resource with the registry server. Netcool/Impact does not
automatically register resources. See “Registering OSLC resources.”

Registering OSLC resources
Netcool/Impact does not automatically register OSLC resources with the services
registry.

About this task

If you are registering the OSLC resources with the Registry Service provided by
Jazz for Service Management, you need use resources and RDF models that match
the specifications of the common resource type vocabulary (CRTV). For more
information, see the section about the common resource type vocabulary in the
Registry Services guide (http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/
com.ibm.psc.doc_1.1.0/psc_ic-homepage.html).

If you want to view the resource record for OSLC resources that you register with
the Registry Service provided by Jazz for Service Management, you must include
the crtv namespace in the URL.

Procedure

To register OSLC resources, you can use one of the following two methods:
v Use the RDFRegister policy function in a policy to register the resource. For

more information, see “RDFRegister” on page 234.
v Use the GetHTTP policy function to perform a HTTP POST function on the

resource or list of resource members. You must define the Method parameter as
POST. You can also use the OSLC query syntax to limit the properties that are
registered as part of the resource.

Chapter 15. Working with OSLC for Netcool/Impact 229

http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html

Results

After you run the policy that contains the policy function, Netcool/Impact tries to
register the resource or list of resource members included in the policy function.

Netcool/Impact also returns the response status, location header, and body text
from the registry server to the client. The location header displays the location of
the resources registration record for each resource that was registered. The body
content that is contained in the response specifies the location of each registration
record for each resource that was registered.

If a single resource is registered successfully, the system displays a 201 status
code (Created) message. If multiple resources are registered successfully, the
system displays a 200 status code (OK) message.

When you register multiple resources, Netcool/Impact also returns the following
headers and the response body text from the registry server to the client:
v NextPage: If a next page of resources exists, the header contains the location URI

of the next set of resources. If no next page exists, the response does not contain
this header.

v TotalCount: The total number of resources across all pages. This header is
returned when you register multiple resource.

The successful registration of an OSLC resource results in two records. A
registration record is created in the resource registry. A resource record is also
created and this record is available through the resource URI.

To view the registration records for the resource registry that is used by the
Registry Service, add /rr/registration/collection to the URI. For example:
http://example.com:9080/oslc/rr/registration/collection

To view the registered resources for a service provider, such as the Registry
Service, add /rr/collection to the Registry Service URL. For example:
http://example.com:9080/oslc/rr/collection?oslc.select=*

If the same resource is registered in two different instances because they belong to
two different service providers, two registration records are created but only a
single resource record is created and it is available through a single resource URI.

If you are integrating OSLC with the Registry Service and the OSLC resources are
not displayed in this collection, check that the resources used match the modeling
guidelines and use the common resource type vocabulary (CRTV). Also check that
the resource URL contains the crtv namespace.

Single resource example

For example, consider the resource that is located at the following URL:
http://<Impactserver>:9080/NCICLUSTER_NCI_oslc/data/
computer/item;ID=4

This returns the following RDF:
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:RESERVATION="http://jazz.net/ns/ism/event/impact/

data/computer/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

230 Netcool/Impact: Solutions Guide

xmlns:crtv="http://open-services.net/ns/crtv#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#">

<crtv:ComputerSystem rdf:about="http://<Impactserver>:9080/
NCICLUSTER_NCI_oslc/data/computer/item;ID=4">

<crtv:serialNumber>IBM00003SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://

<registryserver>:9080/oslc/providers/6015"/>
<RESERVATION:RESERVED_DATE>2012-07-16</RESERVATION:RESERVED_DATE>
<RESERVATION:RESERVED_BY>Michael Morton</RESERVATION:RESERVED_BY>
<RESERVATION:RELEASE_DATE>2013-03-06</RESERVATION:RELEASE_DATE>
<RESERVATION:ID>4</RESERVATION:ID>

</crtv:ComputerSystem>
</rdf:RDF>

Use the query syntax in the URL to limit the properties to crtv:serialNumber,
crtv:model, crtv:manufacturer, and oslc:serviceProvider:
http://<Impactserver>:9080/NCICLUSTER_NCI_oslc/data/computer/
item;ID=4?oslc.properties=crtv:serialNumber,oslc:serviceProvider,
crtv:manufacturer,crtv:model

This URL returns the following RDF:
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:RESERVATION="http://jazz.net/ns/ism/event/impact/data/

computer/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:crtv="http://open-services.net/ns/crtv#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#">

<crtv:ComputerSystem rdf:about="http://<Impactserver>:9080/
NCICLUSTER_NCI_oslc/data/computer/item;ID=4">

<crtv:serialNumber>IBM00003SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://<registryserver>:9080/

oslc/providers/6015"/>
</crtv:ComputerSystem>

</rdf:RDF>

Use the following policy to perform a POST function on the URI of the resource.
The POST function registers the resource with the resource registry associated with
the serviceProvider property that is defined in the resource.
Log("SCR_RegisterSystems: Entering policy");
HTTPHost="impactserver";
HTTPPort=9080;
Protocol="http";
Path="/NCICLUSTER_NCI_oslc/data/computer/item;ID=4?oslc.properties
=crtv:serialNumber,
oslc:serviceProvider,crtv:manufacturer,crtv:model";
ChannelKey="tom";
//Method="GET"; //Retrieves the Systems
Method="POST"; //Registers the Systems
AuthHandlerActionTreeName="";
FilesToSend=newobject();
HeadersToSend=newobject();
HttpProperties=newobject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="password";

x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName,

Chapter 15. Working with OSLC for Netcool/Impact 231

null, FilesToSend, HeadersToSend, HttpProperties);
Log(CurrentContext());
Log("SCR_RegisterSystems: HTTP Response: " + x);

After the policy runs and the resource is registered, the location of the registration
record on the Registry Services server is detailed in the Location header.

Registering multiple resources
You can also use Netcool/Impact to register multiple resources in the resource
registry.

Example

The following URL contains a set of resource members that are to be registered:
http://<Impactserver>:9080/NCICLUSTER_NCI_oslc/data/computer/

This URL returns the following RDF:
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:RESERVATION="http://jazz.net/ns/ism/event/impact/data/computer/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:crtv="http://open-services.net/ns/crtv#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#">

<rdf:Description rdf:about="http://<impact-server>:9080/
NCICLUSTER_NCI_oslc/data/computer/">

<rdfs:member>
<crtv:ComputerSystem rdf:about="http://<Impactserver>:

9080/NCICLUSTER_NCI_oslc/data/computer/item;ID=4">
<crtv:serialNumber>IBM00003SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://<registry-server>:9080/

oslc/providers/6015"/>
<RESERVATION:RESERVED_DATE>2012-07-16</RESERVATION:RESERVED_DATE>
<RESERVATION:RESERVED_BY>Michael Morton</RESERVATION:RESERVED_BY>
<RESERVATION:RELEASE_DATE>2013-03-06</RESERVATION:RELEASE_DATE>
<RESERVATION:ID>4</RESERVATION:ID>

</crtv:ComputerSystem>
</rdfs:member>
<rdfs:member>
<crtv:ComputerSystem rdf:about="http://<Impactserver>

:9080/NCICLUSTER_NCI_oslc/data/computer/item;ID=3">
<crtv:serialNumber>IBM00002SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://

<registryserver>:9080/oslc/providers/6015"/>
<RESERVATION:RESERVED_DATE>2011-02-20</RESERVATION:RESERVED_DATE>
<RESERVATION:RESERVED_BY>Sandra Burton</RESERVATION:RESERVED_BY>
<RESERVATION:RELEASE_DATE>2013-01-30</RESERVATION:RELEASE_DATE>
<RESERVATION:ID>3</RESERVATION:ID>

</crtv:ComputerSystem>
</rdfs:member>
<rdfs:member>
<crtv:ComputerSystem rdf:about="http://<impact-server>:9080/

NCICLUSTER_NCI_oslc/data/computer/item;ID=0">
<crtv:serialNumber>IBM00001SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://

<registryserver>:9080/oslc/providers/6015"/>
<RESERVATION:RESERVED_DATE>2012-08-11</RESERVATION:RESERVED_DATE>
<RESERVATION:RESERVED_BY>John Lewis</RESERVATION:RESERVED_BY>
<RESERVATION:RELEASE_DATE>2013-04-12</RESERVATION:RELEASE_DATE>
<RESERVATION:ID>0</RESERVATION:ID>

232 Netcool/Impact: Solutions Guide

</crtv:ComputerSystem>
</rdfs:member>

</rdf:Description>
<oslc:ResponseInfo rdf:about="http://<impact-server>9080/

NCICLUSTER_NCI_oslc/data/computer/?oslc.paging=true&oslc.pageSize=100">
<oslc:totalCount>3</oslc:totalCount>

</oslc:ResponseInfo>
</rdf:RDF>

As this list contains a list of resource members, you can use the oslc.select query
parameter to limit the properties of each resource member:
http://<Impactserver>:9080/NCICLUSTER_NCI_oslc/data/
computer?oslc.select=crtv:serialNumber,crtv:manufacturer,crtv:model,
oslc:serviceProvider

The URL returns the following RDF:
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:RESERVATION="http://jazz.net/ns/ism/event/impact/data/computer/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:crtv="http://open-services.net/ns/crtv#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#">

<oslc:ResponseInfo rdf:about="http://<Impactserver>:9080/
NCICLUSTER_NCI_oslc/data/computer?oslc.select=crtv:serialNumber,
crtv:manufacturer,crtv:model,oslc:serviceProvider&
oslc.paging=true&oslc.pageSize=100">

<oslc:totalCount>3</oslc:totalCount>
</oslc:ResponseInfo>
<rdf:Description rdf:about="http://<Impactserver>:9080/

NCICLUSTER_NCI_oslc/data/computer?oslc.select=crtv:serialNumber,
crtv:manufacturer,crtv:model,oslc:serviceProvider">

<rdfs:member>
<crtv:ComputerSystem rdf:about="http://<Impactserver>:

9080/NCICLUSTER_NCI_oslc/data/computer/item;ID=4">
<crtv:serialNumber>IBM00003SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://<registry-server>:

9080/oslc/providers/6015"/>
</crtv:ComputerSystem>

</rdfs:member>
<rdfs:member>
<crtv:ComputerSystem rdf:about="http://<Impactserver>:

9080/NCICLUSTER_NCI_oslc/data/computer/item;ID=3">
<crtv:serialNumber>IBM00002SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://<registryserver>:

9080/oslc/providers/6015"/>
</crtv:ComputerSystem>

</rdfs:member>
<rdfs:member>
<crtv:ComputerSystem rdf:about="http://<Impactserver>:

9080/NCICLUSTER_NCI_oslc/data/computer/item;ID=0">
<crtv:serialNumber>IBM00001SN</crtv:serialNumber>
<crtv:model>IBM Model01</crtv:model>
<crtv:manufacturer>IBM Manufacturer01</crtv:manufacturer>
<oslc:serviceProvider rdf:resource="http://<registry-server>:

9080/oslc/providers/6015"/>
</crtv:ComputerSystem>

</rdfs:member>
</rdf:Description>

</rdf:RDF>

Chapter 15. Working with OSLC for Netcool/Impact 233

Use the following policy to perform a POST function on the URI of the resources.
The POST function registers the resources with the resource registry associated
with the serviceProvider property that is defined in the resource.
Log("SCR_RegisterSystems: Entering policy");
HTTPHost="impactserver";
HTTPPort=9080;
Protocol="http";
Path="/NCICLUSTER_NCI_oslc/data/computer?oslc.paging
=true&oslc.pageSize=100";
ChannelKey="tom";
//Method="GET";
//Retreives the Systems Method="POST";
//Registers the Systems AuthHandlerActionTreeName="";
FilesToSend=newobject();
HeadersToSend=newobject();
HttpProperties=newobject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="password";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName, null,
FilesToSend, HeadersToSend, HttpProperties); Log(CurrentContext());
Log("SCR_RegisterSystems: HTTP Response: " + x);

If the resources are registered successfully, the system displays a message to
confirm. Netcool/Impact also returns the header, body text, and other information
that is contained in the response from the registry server to the client. The header
and body text specify the location of each registration record for each resource that
was registered.

RDFRegister
You can use the RDFRegister function to help you to register service providers or
OSLC resources with the registry server.

Before you can register a service provider or resource, you must use the other RDF
policy functions to build an RDF model that meets the OSLC and Registry Services
requirements.

After you build the RDF model, use the RDFRegister function to register the RDF
with the resource registry contained in the Registry Services integration service.

If the service provider or OSLC resource is registered successfully, the RDFRegister
function returns the resource location of the registration record. The following
variables and their return values are also returned to provide more information:
v ResultCode contains the result code for the response.
v HeadersReceived contains the headers received in the response.
v HeadersSent contains the headers sent in the response.
v ResponseBody contains the response body text.

If the query parameters are set in the URL and you use the RDFRegister policy
function to register a service provider, you must manually add the location of the
service provider to the policy. For example:
RDFStatement(newModel, manu[0].subject, "http://open-services.net/ns/
core#serviceProvider", serviceProviderURL, true);

If you use the query string inside the path, you must also ensure that the
FormParameters parameter is set to null. For example:
FormParameters=null;

234 Netcool/Impact: Solutions Guide

Finally, you must ensure that the policy contains pagination information. For
example:
Path="/NCICLUSTER_NCI_oslc/data/mysql1?oslc.paging=true&oslc.pageSize=100";

If unsuccessful, the return value of the resource location registration record is null.
Error code information is retuned in the ErrorReason and ResultCode variables.

Syntax

The RDFRegister function has the following syntax:
[String =] RDFRegister(URI, Username , Password, Model)

where Username can be a null or void string to specify that no authentication is
required.

Parameters

The RDFRegister function has the following parameters:

Table 70. RDFRegister function parameters

Parameter Type Description

URI String Registry Services server
creation factory URI

Username String User name for the Registry
Services server

Password String Password for the Registry
Services server

Model Model Model that contains the RDF

Example

The following example manually registers a service provider and a set of resources
that have been exposed by the OSLC server provider in Netcool/Impact.

The Registry Services server information is as follows:
RegistryServerProviderCFUri="http://<registry_services_server>:
9080/oslc/pr/collection";
RegistryServerResourceCFUri="http://<registry_services_server>:
9080/oslc/rr/registration/collection";
RegistryServerUsername="system";
RegistryServerPassword="manager";

The Netcool/Impact server information is as follows:
HTTPHost="<impact_server>";
HTTPPort=9080;
Protocol="http";
Path1="/NCICLUSTER_NCI_oslc/provider/provider01";
Path2="/NCICLUSTER_NCI_oslc/data/computer";
ChannelKey="";
Method="GET";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();

Chapter 15. Working with OSLC for Netcool/Impact 235

HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
HttpProperties.AuthenticationScheme="basic";

Get the service provider RDF from Netcool/Impact:
serviceProviderResponse=GetHTTP(HTTPHost,HTTPPort, Protocol, Path1,
ChannelKey,Method, AuthHandlerActionTreeName, null, FilesToSend,
HeadersToSend,HttpProperties);

Create an RDF model that is based on the service provider response:
serviceProviderModel=RDFParse(serviceProviderResponse)

Register the service provider in the provider registry:
serviceProviderURL = RDFRegister(RegistryServerProviderCFUri,
RegistryServerUsername, RegistryServerPassword,serviceProviderModel);
log("Provider Registry-Service Provider URL: " + serviceProviderURL);

Get all the computer system resources from Netcool/Impact:
allResources=GetHTTP(HTTPHost,HTTPPort, Protocol, Path2, ChannelKey,
Method,AuthHandlerActionTreeName, null, FilesToSend, HeadersToSend,
HttpProperties);

Create an RDF model that is based on the resource response:
allResourceModel=RDFParse(allResources);

Register each computer system and a set of properties with the resource registry:
statements=RDFSelect(allResourceModel, null, "http://jazz.net/ns/ism/
events/impact/data/computer/ID", null);
size=Length(statements);
count=0;
while(count<size) {
Path3=statements[count].subject;
//Get the individual computer system resource
resourceResponse=GetHTTP(HTTPHost,HTTPPort, Protocol, Path3, ChannelKey,
Method,AuthHandlerActionTreeName, null, FilesToSend, HeadersToSend,
HttpProperties);
resourceModel=RDFParse(resourceResponse);

Create a model that contains the properties and data that you want to register:
newModel=RDFModel();
manu=RDFSelect(resourceModel, null, "http://open-services.net/ns/
crtv#manufacturer",null);
model=RDFSelect(resourceModel, null, "http://open-services.net/ns/
crtv#model", null);
serial=RDFSelect(resourceModel, null, "http://open-services.net/ns/
crtv#serialNumber", null);
RDFModelUpdateNS(newModel, "crtv", "http://open-services.net/ns/crtv#");
RDFModelUpdateNS(newModel, "oslc","http://open-services.net/ns/core#");
RDFStatement(newModel, manu[0].subject, "http://www.w3.org/1999/02/
22-rdf-syntax-ns#type",
"http://open-services.net/ns/crtv#ComputerSystem", true);
RDFStatement(newModel, manu[0].subject, manu[0].predicate, manu[0].object,
RDFNodeIsResource(manu[0].object));
RDFStatement(newModel, manu[0].subject, model[0].predicate, model[0].object,
RDFNodeIsResource(manu[0].object));
RDFStatement(newModel, manu[0].subject, serial[0].predicate,
serial[0].object, RDFNodeIsResource(manu[0].object));

Update the model with the service provider location:
RDFStatement(newModel, manu[0].subject, "http://open-services.net/ns/
core#serviceProvider", serviceProviderURL, true);

236 Netcool/Impact: Solutions Guide

Register the resource in the resource registry:
resourceURL = RDFRegister(RegistryServerResourceCFUri,
RegistryServerUsername, RegistryServerPassword, newModel);
log("Resource Registry-Resource URL: " +resourceURL);

count=count+1;
}

RDFUnRegister
To remove the registration record of a service provider or resource from the
registry server, use the RDFUnRegister function to supply the location of the
registration record, the Registry Services server username and password, and the
registration record that you want to remove.

Before you can remove the registration record of a service provider, you must
remove all the registration records for the associated OSLC resources.

If successful, the RDFUnRegister function returns the message code 204 and the
value true. The following variables and their return values are also returned to
provide additional information:
v ResultCode contains the result code for the response.
v HeadersReceived contains the headers received in the response.
v HeadersSent contains the headers sent in the response.
v ResponseBody contains the response body text.

If unsuccessful, the return value of the resource location registration record is false.
Error code information is returned in the ErrorReason and ResultCode variables.

Syntax

The RDFUnRegister function has the following parameters:
[String =] RDFUnRegister(URI, Username , Password)

where Username can be a null or void string to specify that no authentication is
required.

Parameters

Table 71. RDFUnRegister function parameters

Parameter Type Description

URI String Location that contains the
registration record for the
resource or service provider

Username String User name for the Registry
Services server

Password String Password for the Registry
Services server

Example of how to remove the registration of a service provider

The following example demonstrates how to remove the registration of the service
provider.

The service provider location is:

Chapter 15. Working with OSLC for Netcool/Impact 237

http://<registryserver>:9080/oslc/providers/6577

Use the RDFUnRegister function to remove the registration. For example:
//Registry server information
ServiceProviderUri="http://<registryserver>:9080/oslc/
providers/6577";
RegistryServerUsername="system";
RegistryServerPassword="manager";
result = RDFUnRegister(ServiceProviderUri, RegistryServerUsername,
RegistryServerPassword);

Example of how to remove the registration of an OSLC resource

The following example demonstrates how to use the policy function to remove the
registration of an OSLC resource.
registrationURL = "http://nc004075.romelab.it.ibm.com:16310/oslc/registration/
1351071987349";
providerURL = "http://nc004075.romelab.it.ibm.com:16310/oslc/providers/
1351071987343";
RegistryServerUsername="smadmin";
RegistryServerPassword="tbsm01bm";

returnString = RDFUnRegister (registrationURL, RegistryServerUsername,
RegistryServerPassword);

Working with Netcool/Impact policies and OSLC
You can integrate the Netcool/Impact OSLC provider and Netcool/Impact policies.

Accessing output user parameters as OSLC resources
To use the Netcool/Impact OSLC provider to run Netcool/Impact policies and
access the results, you must edit the NCI_oslc.props file that is in the
IMPACT_HOME/etc directory.

About this task

Netcool/Impact returns two types of RDF objects, literals and resources. RDF
literals contain an actual value. RDF resources are returned as URLs that you can
access to find more information about an object.

Procedure
1. To access Netcool/Impact policy results, edit the NCI_oslc.props file that is in

the IMPACT_HOME/etc directory, where NCI is the name of your Impact Server.
Add the following statement for each policy that you want to access:
oslc.policy.<pathcomponent>=<policyname>

2. Restart the Impact Server.

Example

For example, you add the following to the NCI_oslc.props file to access the
SNMPTableTest policy:
oslc.policy.tabletest=SNMPTableTest

Use the following URL to run the policy and return the results:
http://example.com:9080/NCI_NCICLUSTER_oslc/policy/tabletest

238 Netcool/Impact: Solutions Guide

where NCI is the Impact Server name and NCICLSUTER is the Netcool/Impact cluster
name.

When you access this URL, the policy runs and the output user parameters are
available as RDF resources.

OSLC and variables output by policy results
Simple variables, such as string, integer, double, float, Boolean, and
date/timestamp are made available as RDF literals. More complex variables such
as impact objects, arrays, and function results are displayed as RDF resources with
an RDF link that contains internal details of the variable.

This example shows the user output parameters from the Example policy. The
results of this policy contain both RDF literals and resources. The following URL
triggers the policy execution and makes the results available as OSLC resources:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/example/

The information is returned as:
<rdf:RDF

<examplePolicy:example rdf:about="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example">

<example:myArrayStr rdf:resource="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example/myArrayStr"/>

<example:myObject rdf:resource="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example/myObject"/>

<example:myObjArray rdf:resource="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example/myObjArray"/>

<example:myGetFilter rdf:resource="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example/myGetFilter"/>

<example:MyAlerts rdf:resource="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example/MyAlerts"/>

<example:myString>Brian</example:myString>
<example:myDouble>22.5</example:myDouble>
<example:myFloat>100.55</example:myFloat>
<example:myInteger>32</example:myInteger>
<example:myBoolean>true</example:myBoolean>

</examplePolicy:example>
</rdf:RDF>

The more complex variables in this example, such as myObject, myArrayStr,
myObjArray, and myGetFilter, are displayed as resource links. The other variables
are simple variables, such as myString, myDouble, myFloat, myInteger, and
myBoolean, that are displayed as literals alongside their values.

You use the following URL to access the resource URL used for Netcool/Impact
objects, represented by the myObject variable:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/example/myObject

The resource URL returns the results as:
<rdf:RDF>

<examplePolicy:myObject rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/
policy/example/myObject">

<myObject:bmi>24.5</myObject:bmi>
<myObject:lname>Doe</myObject:lname>
<myObject:fname>John</myObject:fname>
<myObject:age>25</myObject:age>
<oslc:totalCount>1</oslc:totalCount>
<rdf:type rdf:resource="http://open-services.net/ns/core#ResponseInfo"/>

</examplePolicy:myObject>
</rdf:RDF>

Chapter 15. Working with OSLC for Netcool/Impact 239

Accessing arrays of variables from policy results
To access an array of variables that are contained in a policy result in an OSLC
context, you use a URL that contains the variable name.

Before you begin

The default array prefix is oslc_pos. To change this setting, add the following
definition to the NCI_oslc.props file:
oslc.policy.<pathcomponent>.arrayprefix=<prefix>.

For example, add the following definition to the NCI_oslc.props file to change the
prefix to pos for the example path component:
oslc.properties.example.arrayprefix=pos

Procedure

To access the resource URL used for an array of objects, represented in this
example by the myArrayStr variable, use the following URL:
http://<server>:<port>/NCICLUSTER_NCI_oslc/policy/
example/myArrayStr

Results

This URL returns the following results:
<rdf:RDF>

<examplePolicy:myArrayStr rdf:about="http://<server>:<port>/
NCICLUSTER_NCI_oslc/policy/example/myArrayStr">

<myArrayStr:oslc_pos_2>Hi</myArrayStr:oslc_pos_2>
<myArrayStr:oslc_pos_1>Hey</myArrayStr:oslc_pos_1>
<myArrayStr:oslc_pos_0>Hello</myArrayStr:oslc_pos_0>
<oslc:totalCount>1</oslc:totalCount>
<rdf:type rdf:resource="http://open-services.net/ns/core#ResponseInfo"/>

</examplePolicy:myArrayStr>
</rdf:RDF>

If an array variable contains multiple Netcool/Impact objects, then a resource that
contains a link to multiple resources is created. Each of these resources contains a
link to the actual Netcool/Impact object in the array.

Example

Use the following URL to access the array of variables that is represented by the
myObjArray variable:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/example/myObjArray/

As this array contains multiple objects, the URL returns the following results:
<rdf:RDF>

<oslc:ResponseInfo rdf:about="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example/myObjArray/">

<rdfs:member>
<examplePolicy:myObjArray rdf:about="http://example.com:9080/

NCICLUSTER_NCI_oslc/policy/example/myObjArray">
<myObjArray:oslc_pos_2 rdf:resource="http://example.com:9080/

NCICLUSTER_NCI_oslc/policy/example/myObjArray/oslc_pos_2"/>
<myObjArray:oslc_pos_1 rdf:resource="http://example.com:9080/

NCICLUSTER_NCI_oslc/policy/example/myObjArray/oslc_pos_1"/>
<myObjArray:oslc_pos_0 rdf:resource="http://example.com:9080/

NCICLUSTER_NCI_oslc/policy/example/myObjArray/oslc_pos_0"/>

240 Netcool/Impact: Solutions Guide

</examplePolicy:myObjArray>
</rdfs:member>
<oslc:totalCount>1</oslc:totalCount>

</oslc:ResponseInfo>
</rdf:RDF>

If you access the URL associated with one of the Netcool/Impact objects, the
following results are returned:
<rdf:RDF>

<myObjArray:oslc_pos_1 rdf:about="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/example/myObjArray/oslc_pos_1">

<oslc_pos_1:fname>Garrett</oslc_pos_1:fname>
<oslc_pos_1:bmi>33.1</oslc_pos_1:bmi>
<oslc_pos_1:age>30</oslc_pos_1:age>

</myObjArray:oslc_pos_1>
</rdf:RDF>

Displaying the resource shapes for policy results
Resource shapes are available for any OSLC resource produced by the
Netcool/Impact OSLC provider. The resource shape defines the set of OSLC
properties for a specific operation.

Procedure

To display the resource shape for any OSLC object, add resourceShapes to the
URL.

Example

For example, you use the following URL to display the resource shape definition
for the specified resource:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/resourceShapes/
example/myGetFilter/item;ID=1010

This URL returns the following results which include the resource shape definition:
<rdf:RDF

<oslc:ResourceShape rdf:about="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/resourceShapes/example/myGetFilter">

<dcterms:title>examplePolicy</dcterms:title>
<oslc:property>

<oslc:Property rdf:about="http://xmlns.com/foaf/0.1/givenName">
<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<dcterms:title>NAME</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myGetFilter/NAME"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>NAME</oslc:name>
<dcterms:description>NAME</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myGetFilter/STARTED">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>
<dcterms:title>STARTED</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myGetFilter/STARTED"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>STARTED</oslc:name>
<dcterms:description>STARTED</dcterms:description>

Chapter 15. Working with OSLC for Netcool/Impact 241

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myGetFilter/MANAGER">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
<dcterms:title>MANAGER</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myGetFilter/MANAGER"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>MANAGER</oslc:name>
<dcterms:description>MANAGER</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myGetFilter/ID">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
<dcterms:title>ID</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myGetFilter/ID"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>ID</oslc:name>
<dcterms:description>ID</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myGetFilter/DEPT">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
<dcterms:title>DEPT</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myGetFilter/DEPT"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>DEPT</oslc:name>
<dcterms:description>DEPT</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myGetFilter/CEASED">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime"/>
<dcterms:title>CEASED</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myGetFilter/CEASED"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>CEASED</oslc:name>
<dcterms:description>CEASED</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:describes rdf:resource="http://xmlns.com/foaf/0.1/Group"/>

</oslc:ResourceShape>
</rdf:RDF>

OSLC and UI data provider compatible variables for policy
results
The Netcool/Impact OSLC provider and the UI data provider can remotely run a
policy and make the results available as an OSLC or UI data provider compatible
resource with property values that contain the user output parameters.

The following variable types are supported:

242 Netcool/Impact: Solutions Guide

v String
v Integer
v Double
v Float
v Boolean
v Date/Timestamp
v Impact Object
v Long (represented as an Integer in OSLC)

Variable arrays for each of these variables are also supported. These arrays must of
the same variable type.

The variables returned by the GetByFilter and DirectSQL functions are also
supported.

Configuring user parameters
To use the UI data provider or OSLC with your Netcool/Impact policies, you must
configure user parameters to make the policy results compatible with the UI data
provider or available as OSLC resources.

About this task

You can create either policy runtime parameters or policy output parameters.
Policy runtime parameters represent the runtime parameters that you define in
policies. For example, you can use a policy runtime parameter to pass values from
one policy to another in a data mashup.

Policy output parameters represent the parameters that are output by policies. For
example, the UI data provider uses policy output parameters to visualize data
from policies in the console.

Procedure
1. To open the policy user parameter editor in the policy editor toolbar, click the

Configure User Parameters icon.
2. To create a policy output parameter, click New Output Parameter:New. To

create a policy runtime parameter, click New Runtime Parameter:New.
Mandatory fields are denoted by an asterisk (*). You must enter a unique name
in the Name field.

3. Define the custom schemas for the output parameters if required.
If you are using the DirectSQL policy function with OSLC, you must define the
custom schema for it.
If you are using DirectSQL, Impact Object, or Array of Impact Object with
the UI data provider or the chart widget, you must define the custom schema
for these values.
For more information, see “Creating custom schema values for output
parameters” on page 170

4. To save the changes to the parameters and close the window, click OK.

Example

This example demonstrates how to create output parameters for a policy. First, you
define a simple policy, like:

Chapter 15. Working with OSLC for Netcool/Impact 243

first_name = “Mark”;
zip_code = 12345;
Log(“Hello “ + first_name + “ living at “ + zip_code);

Next, define the output parameters for this policy. In this case, there are two
output parameters. You enter the following information:

Table 72. PolicyDT1 output parameter

Field User entry

Name Enter a unique name. For example,
PolicyDT1.

Policy variable name first_name

Format String

Table 73. PolicyDT2 output parameter

Field User entry

Name Enter a unique name. For example,
PolicyDT2

Policy variable name zip_code

Format Integer

Accessing data types output by the GetByFilter function
If you want to access the results from the GetByFilter function, you need to create
output parameters for the OSLC provider.

Procedure
1. To open the policy user parameter editor, click the Configure User Parameters

icon in the policy editor toolbar. You can create policy user parameters for
runtime and output. To open the Create a New Policy Output Parameter
window, click New.

2. Select data type as the format.
3. Enter the name of the data item to which the output of the GetByFilter

function is assigned in the Policy Variable Name field.
4. Enter the name of the data source in the Data Source Name field.
5. Enter the name of the data type in the Data Type Name field.

Example

This example demonstrates how to make the output from the GetByFilter function
available to the Netcool/Impact OSLC provider.

You create a data type called ALERTS that belongs to the defaultobjectserver data
source. This data type belongs to Netcool/OMNIbus and it points to
alerts.status. The key field is Identifier. The following four rows of data are
associated with the key field:
v Event1
v Event2
v Event3
v Event4

You create the following policy, called Test_Policy3:

244 Netcool/Impact: Solutions Guide

MyAlerts = GetByFilter("ALERTS", "Severity > 0", false);

Next, you define the output parameters for the policy as follows:

Table 74. PolicyData1 output parameter

Field User entry

Name PolicyData1

Policy Variable Name MyAlerts

Format Datatype

Data Source Name defaultobjectserver

Data Type Name ALERTS

Accessing variables output by the DirectSQL function
To access variables output by the DirectSQL policy function, you must create
DirectSQL output parameters and format values.

About this task

If a variable is output by the DirectSQL policy function, Netcool/Impact creates an
RDF resource. This resource contains multiple properties for each defined output
parameter.

Only the following simple variables are supported:
v String
v Double
v Integer
v Long
v Date/Timestamp
v Boolean

If the column names contain special characters, you must add a statement that lists
these special characters to the NCI_server.props file. For more information, see the
topic about using special characters in column names in the section about
troubleshooting general Netcool/Impact issues in the Troubleshooting Guide.

If the policies that you use to provide data to OSLC contain special characters, you
must escape these special characters. For more information, see the topic about
using special characters in OSLC and UI data provider policies in the section about
troubleshooting OSLC in the Troubleshooting Guide.

Procedure

To access variables output by the DirectSQL policy function, create a DirectSQL
output parameter and define the DirectSQL values for this parameter. For a
detailed description of these steps, see “Creating custom schema values for output
parameters” on page 170.

Example

This example demonstrates how to access variables output by the DirectSQL policy
function. You define the following policy which uses the DirectSQL function:

Chapter 15. Working with OSLC for Netcool/Impact 245

MyAlerts=DirectSQL(’Omnibus’,’select min(Serial) as min_serial,
max(Serial) as max_serial,count(<) as num_events from alerts.status’, false);

Next, define the DirectSQL output parameter as outlined in the table. You do not
need to enter a data source or data type name.

Table 75. DirectSQL output parameter

Field User Entry

Name DirectSQL_OP1

Policy Variable Name DirectSQL_1

Format DirectSQL

To create the DirectSQL format values, click the DirectSQL editor icon. Define the
format values as follows:

Table 76. DirectSQL format values

Name Format Key

min_serial Double True

max_serial Float True

num_events Integer True

Use the following URI to run the policy and return the results:
http://example.com:9080/NCICLUSTER_NCI_oslc/
policy/examplePolicy/MyAlerts

The results are:
<rdf:RDF

<oslc:ResponseInfo rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/
policy/examplePolicy/MyAlerts">

<rdfs:member>
<examplePolicy:MyAlerts rdf:about="http://example.com:9080/

NCICLUSTER_NCI_oslc/policy/examplePolicy/MyAlerts/
item;min_serial=133;num_events=12;max_serial=521">

<MyAlerts:num_events>12</MyAlerts:num_events>
<MyAlerts:min_serial>133</MyAlerts:min_serial>
<MyAlerts:max_serial>521</MyAlerts:max_serial>

</examplePolicy:MyAlerts>
</rdfs:member>
<oslc:totalCount>1</oslc:totalCount>

</oslc:ResponseInfo>
</rdf:RDF>

The results also contain the resource shape:
<rdf:RDF

<oslc:ResourceShape rdf:about="http://example.com:9080/
NCICLUSTER_NCI_oslc/policy/resourceShapes/example/MyAlerts">

<dcterms:title>examplePolicy</dcterms:title>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myDirectSQL/num_events">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
<dcterms:title>num_events</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myDirectSQL/num_events"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>num_events</oslc:name>

246 Netcool/Impact: Solutions Guide

<dcterms:description>num_events</dcterms:description>
</oslc:Property>

</oslc:property>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myDirectSQL/min_serial">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#double"/>
<dcterms:title>min_serial</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myDirectSQL/min_serial"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>min_serial</oslc:name>
<dcterms:description>min_serial</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:property>

<oslc:Property rdf:about="http://jazz.net/ns/ism/events/impact/policy/
example/myDirectSQL/max_serial">

<oslc:readOnly>true</oslc:readOnly>
<oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
<dcterms:title>max_serial</dcterms:title>
<oslc:propertyDefinition rdf:resource="http://jazz.net/ns/ism/events/

impact/policy/example/myDirectSQL/max_serial"/>
<oslc:occurs rdf:resource="http://open-services.net/ns/core#Zero-or-one"/>
<oslc:name>max_serial</oslc:name>
<dcterms:description>max_serial</dcterms:description>

</oslc:Property>
</oslc:property>
<oslc:describes rdf:resource="http://jazz.net/ns/ism/events/impact/

policy/example/"/>
</oslc:ResourceShape>

</rdf:RDF>

Creating custom schema values for output parameters:

When you define output parameters that use the DirectSQL, Array of Impact
Object, or Impact Object format in the user output parameters editor, you also
must specify a name and a format for each field that is contained in the
DirectSQL, Array of Impact Object, or Impact Object objects.

About this task

Custom schema definitions are used by Netcool/Impact to visualize data in the
console and to pass values to the UI data provider and OSLC. You create the
custom schemas and select the format that is based on the values for each field
that is contained in the object. For example, you create a policy that contains two
fields in an object:
O1.city="NY"
O1.ZIP=07002

You define the following custom schemas values for this policy:

Table 77. Custom schema values for City

Field Entry

Name City

Format String

Chapter 15. Working with OSLC for Netcool/Impact 247

Table 78. Custom schema values for ZIP

Field Entry

Name ZIP

Format Integer

If you use the DirectSQL policy function with the UI data provider or OSLC, you
must define a custom schema value for each DirectSQL value that you use.

If you want to use the chart widget to visualize data from an Impact object or an
array of Impact objects with the UI data provider and the console, you define
custom schema values for the fields that are contained in the objects. The custom
schemas help to create descriptors for columns in the chart during initialization.
However, the custom schemas are not technically required. If you do not define
values for either of these formats, the system later rediscovers each Impact object
when it creates additional fields such as the key field. UIObjectId, or the field for
the tree widget, UITreeNodeId. You do not need to define these values for OSLC.

Procedure

1. In the policy user parameters editor, select DirectSQL, Impact Object, or Array
of Impact Object in the Format field.

2. The system shows the Open the Schema Definition Editor icon

beside
the Schema Definition field. To open the editor, click the icon.

3. You can edit an existing entry or you can create a new one. To define a new
entry, click New. Enter a name and select an appropriate format.
To edit an existing entry, click the Edit icon beside the entry that you want to
edit

4. To mark an entry as a key field, select the check box in the Key Field column.
You do not have to define the key field for Impact objects or an array of Impact
objects. The system uses the UIObjectId as the key field instead.

5. To delete an entry, select the entry and click Delete.

Configuring custom URIs for policy results and variables
You can assign custom URIs to policy and user output parameters or variables to
create a custom mapping. You can use this mapping to represent a resource in any
domain.

About this task

Netcool/Impact supports only the one-to-one mapping of user output parameters
to OSLC properties.

Procedure
1. To add a custom URI to a policy resource, add the following definition to the

NCI_oslc.prop file:
oslc.policy.<pathcomponent>.uri=<uri>

2. To add a custom URI to a variable, specify the variable and the path
component. As there are multiple layers of variables, you must specify each
variable until you reach the one that you want:

248 Netcool/Impact: Solutions Guide

oslc.policy.<pathcomponent>.<variablename>.uri=<uri>
oslc.policy.<pathcomponent>.<variablename>.<variablename>
....<variablename>.uri=uri

Example

The following example demonstrates how the example policy can be represented in
a Friend of a Friend (FOAF) specification. You start by adding statements to the
NCI_oslc.props file:
oslc.policy.example=examplePolicy
oslc.policy.example.namespaces.foaf=http://xmlns.com/foaf/0.1/
oslc.policy.example.uri=http://xmlns.com/foaf/0.1/Person
oslc.policy.example.myGetFilter.NAME.uri=http://xmlns.com/foaf/0.1/givenName

You use this URL to query the OSLC resource:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/example/myGetFilter

This URL returns the RDF:

Note: This example is an approximation for exemplary purposes.
<rdf:RDF

<oslc:ResponseInfo rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/policy/
example/myGetFilter">

<rdfs:member>
<j.0:Person rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/policy/

example/myGetFilter/item;ID=1012">
<j.0:givenName>Kevin Doe</j.0:givenName>
<myGetFilter:STARTED>1976-07-06</myGetFilter:STARTED>
<myGetFilter:MANAGER>1001</myGetFilter:MANAGER>
<myGetFilter:ID>1012</myGetFilter:ID>
<myGetFilter:DEPT>Documentation</myGetFilter:DEPT>

</j.0:Person>
</rdfs:member>
<rdfs:member>

<j.0:Person rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/policy/
example/myGetFilter/item;ID=1010">

<j.0:givenName>Brian Doe</j.0:givenName>
<myGetFilter:STARTED>1980-08-11</myGetFilter:STARTED>
<myGetFilter:MANAGER>1001</myGetFilter:MANAGER>
<myGetFilter:ID>1010</myGetFilter:ID>
<myGetFilter:DEPT>Documentation</myGetFilter:DEPT>

</j.0:Person>
</rdfs:member>
<oslc:totalCount>2</oslc:totalCount>

</oslc:ResponseInfo>
</rdf:RDF>

The user has not defined the prefix and namespace in this example. In this case,
the RDF shows the automatically generated prefix for the namespace j.0 for
http://xmlns.com/foaf/0.1/.

You specify a prefix for a namespace in this format:
oslc.policy.<path>.namespaces.<prefix>=<uri>

For this example, you add this statement:
oslc.policy.example.namespaces.foaf=http://xmlns.com/foaf/0.1/

When you use the following URL to query the OSLC resource, the RDF is
produced with the prefix specified by you:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/example/myGetFilter

Chapter 15. Working with OSLC for Netcool/Impact 249

This URL returns as:
<rdf:RDF

<oslc:ResponseInfo rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/policy/
example/myGetFilter">

<rdfs:member>
<foaf:Person rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/policy/

example/myGetFilter/item;ID=1012">
<foaf:givenName>Kevin Doe</foaf:givenName>
<myGetFilter:STARTED>1976-07-06</myGetFilter:STARTED>
<myGetFilter:MANAGER>1001</myGetFilter:MANAGER>
<myGetFilter:ID>1012</myGetFilter:ID>
<myGetFilter:DEPT>Documentation</myGetFilter:DEPT>

</foaf:Person>
</rdfs:member>
<rdfs:member>

<foaf:Person rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/policy/
example/myGetFilter/item;ID=1010">

<foaf:givenName>Brian Doe</foaf:givenName>
<myGetFilter:STARTED>1980-08-11</myGetFilter:STARTED>
<myGetFilter:MANAGER>1001</myGetFilter:MANAGER>
<myGetFilter:ID>1010</myGetFilter:ID>
<myGetFilter:DEPT>Documentation</myGetFilter:DEPT>

</foaf:Person>
</rdfs:member>
<oslc:totalCount>2</oslc:totalCount>

</oslc:ResponseInfo>
</rdf:RDF>

Passing argument values to a policy
You can use URL query strings to pass argument values in the form of a string to a
policy. You can access these values by creating a user output parameter for each of
the arguments.

Procedure

Use the following URL to pass argument values to a policy:
http://<host>:<port>/NCI_NCICLUSTER_oslc/policy/
<path name>?arg1=<value>&arg2=<value>

Restriction: Unusually long URLs can cause issues. This depends on the browser
and the Websphere application server settings. To avoid these issues, limit the size
of the values of the variables that are passed through the query string.

Results

After you access this URL, the policy runs. If you do not define any output user
parameters, the user parameters are available as properties within an OSLC
resource.

Example

For example, you use the following URL to pass the variable arg1 with the string
value table1 to the policy defined in the tableset path:
http://example.com:9080/NCI_NCICLUSTER_oslc/policy/tableset?arg1=table1

Configuring hover previews for OSLC resources
You can enable hover previews for OSLC resources. You can configure a title and
other aspects of the hover preview like the size of the window.

250 Netcool/Impact: Solutions Guide

About this task

For more information about using hover previews for OSLC, see Open Services for
Lifecycle Collaboration Core Specification Version 2.0 UI Preview
(http://open-services.net/bin/view/Main/OslcCoreUiPreview)

Procedure

To configure hover previews, add a set of properties for each OSLC resource to the
NCI_oslc.props file. You can use any combination of these properties. Some of
these properties only display if the document or icon parameter exists in the OSLC
resource. For a detailed description of these properties, see “Hover preview
properties for OSLC resources” on page 252.

Results

Each set of properties that you define for an OSLC resource generates a compact
XML representation of the hover preview. This compact XML is used to help
generate the content for the hover preview window in other applications. Each set
of properties can contain variables. When the XML is generated, the variables are
replaced with property values from the OSLC resource in the following format:
$<prefixnamespace>:<propertyname>

For example:
$RESERVATION:HOSTNAME
$RESERVATION:ID

To view all the possible variables for an OSLC resource, use the OSLC resource
URI to view the full XML representation.

If a resource does not exist or an error occurs, the system displays an error code
400 and a message that explains the issue.

If the resource does not support hover previews, for example if the resource
contains rdfs:member lists, the system displays a 406 Not Acceptable error code.

If no hover preview parameters are defined for the resource, the system displays a
compact XML that contains no parameters other than those parameters about the
URI.

If you design a third-party hover preview consumer like TBSM, you can add
application/x-oslc-compact+xml to the URL as an HTTP Accept header to display
the hover preview compact XML document in the response.

Example

The following example demonstrates how to configure the hover preview for an
OSLC resource that is based on a database table called RESERVATION. The
following hover preview settings are defined in the NCI_oslc.props file:
oslc.data.computer=RESERVATION
oslc.data.computer.uri=http://open-services.net/ns/crtv#ComputerSystem
oslc.data.computer.MODEL.uri=http://open-services.net/ns/crtv#model
oslc.data.computer.MANUFACTURER.uri=http://open-services.net/ns/crtv#manufacturer
oslc.data.computer.SERIALNUMBER.uri=http://open-services.net/ns/crtv#serialNumber
oslc.data.computer.namespaces.crtv=http://open-services.net/ns/crtv#
oslc.data.computer.provider=provider01
oslc.data.computer.provider.domain=http://domainx/

Chapter 15. Working with OSLC for Netcool/Impact 251

http://open-services.net/bin/view/Main/OslcCoreUiPreview

oslc.data.computer.preview.title=Computer Reservation System - $RESERVATION:HOSTNAME
oslc.data.computer.preview.shortTitle=Reservation
oslc.data.computer.preview.largePreview.document=https://<impactserver>:
16311/opview/displays/NCICLUSTER-Reservations.html?id=$RESERVATION:ID
oslc.data.computer.preview.largePreview.hintWidth=31.250em
oslc.data.computer.preview.largePreview.hintHeight=21.875em

Next, derive the hover preview content. In this example, use a Netcool/Impact
operator. In this case, two variables are generated in the compact XML:
$RESERVATION:HOSTNAME
$RESERVATION:ID

These variables are converted into the property values based on data from the
OSLC resource:
$RESERVATION:HOSTNAME = mycomputer.ibm.com
$RESERVATION:ID = 4

When you use an HTTP GET method on the resource URL with the
application/x-oslc-compact+xml HTTP Accept header, the following RDF is
returned:
<?xml version="1.0"?>
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:oslc="http://open-services.net/ns/core#">

<oslc:Compact rdf:about="http://example.com:9080/NCICLUSTER_NCI_oslc/data/
computer/item;ID=4">

<dcterms:title>Computer Reservation System - mycomputer.ibm.com</dcterms:title>
<oslc:shortTitle>Reservation</oslc:shortTitle>
<oslc:largePreview>

<oslc:Preview>
<oslc:hintWidth>31.250em</oslc:hintWidth>
<oslc:hintHeight>21.875em</oslc:hintHeight>
<oslc:document rdf:resource="https://<impact-server>:16311/opview/displays/

NCICLUSTER-Reservations.html?id=4"/>
</oslc:Preview>

</oslc:largePreview>
</oslc:Compact>

</rdf:RDF>

Hover preview properties for OSLC resources
To configure hover previews, add the parameters that are listed in the tables to the
NCI_oslc.props file. Some of these parameters only display if the document or icon
parameter exists in the OSLC resource

Table 79. Hover preview parameters

Statement Description

oslc.<type>.<path>.preview.title =
<longtitle>

where <longtitle> specifies the long title
string that is used for the hover preview.

oslc.<type>.
<path>.preview.shortTitle
= <shorttitle>

where <shorttitle> specifies the short title
string that is used for the hover preview.

In an example implementation with TBSM,
this statement supplies the tab name for the
hover preview.

oslc.<type>.<path>.preview.icon =
<URIof16x16image>

where <URIof16x16image> specifies the URI
for a 16x16 image.

252 Netcool/Impact: Solutions Guide

Table 79. Hover preview parameters (continued)

Statement Description

oslc.<type>.<path>.preview.largePreview.
document = <PreviewdocumentURI>

where <PreviewdocumentURI> specifies the
URI used for the HTML preview document.

oslc.<type>.<path>.preview.smallPreview.
document = <PreviewdocumentURI>

where <PreviewdocumentURI> specifies the
URI for the HTML preview document.

In an example implementation with TBSM,
this statement specifies the content rendered
inside the hover preview.

Table 80. Hover preview parameters for icon parameter

Statement Description

oslc.<type>.
<path>.preview.
iconTitle = <Icontitle>

where <Icontitle> specifies the title that is
used for the icon.

oslc.<type>.<path>.preview.iconAltLabel
= <Alternativelabel>

where <Alternativeicontitle> specifies an
alternative label for the icon.

Table 81. Hover preview parameters for document parameter

Statement Description

oslc.<type>.<path>.preview.largePreview.
hintWidth =
<Previewwindowwidth>

where <Previewwindowwidth> specifies the
width of the preview window. For example,
31.250 em.

oslc.<type>.<path>.preview.largePreview.
hintHeight =
<Previewwindowheight>

where <Previewwindowheight> specifies the
height of the preview window. For example,
21.785 em.

oslc.<type>.<path>.preview.largePreview.
initialHeight =
<Previewwindowinitialheight>

where <Previewwindowinitialheight> specifies
the height of the preview window when it
first displays. For example, 21.785 em.

oslc.<type>.<path>.preview.smallPreview.
hintWidth =
<Previewwindowwidth>

where <Previewwindowwidth> specifies the
width of the small preview window. For
example, 31.250 em.

In an example implementation with TBSM,
this statement specifies the width of the
hover preview window.

oslc.<type>.<path>.preview.smallPreview.
hintHeight =
<Previewwindowheight>

where <Previewwindowheight> specifies the
height of the small preview window. For
example, 21.785 em.

In an example implementation with TBSM,
this statement specifies the height of the
hover preview window.

oslc.<type>.<path>.preview.smallPreview.
initialHeight =
<Previewwindowinitialheight>

where <Previewwindowinitialheight> specifies
the height of the small preview window
when it first displays. For example, 21.785
em.

where <type> is the OSLC resource type. It can be either a data or policy.

<path> is the OSLC resource path.

Chapter 15. Working with OSLC for Netcool/Impact 253

Example scenario: using OSLC with Netcool/Impact policies
Read this example scenario to get an overview of how you can use
Netcool/Impact policies to create OSLC service providers and resources, and
register the provider and resources with the Registry Services component of Jazz
for Service Management.

Before you begin

Before you can use OSLC, you must install the Registry Services component of Jazz
for Service Management. For more information, seehttp://pic.dhe.ibm.com/
infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html.

About this task

The Registry Services component of Jazz for Service Management includes two
registries, the resource registry and the provider registry. This example first
demonstrates how to create a service provider and register it with the provider
registry. The second step creates an OSLC resource and registers it with the
resource registry.

Procedure
1. Create a Netcool/Impact policy that creates a service provider and registers it

in the provider registry that is part of the Registry Services component of Jazz
for Service Management:
a. Define the server information for the server where the Registry Services

component of Jazz for Service Management is installed:
RegistryServerProviderCFUri="http://<registry_server>:9080/oslc/pr/collection";
RegistryServerUsername="<user>";
RegistryServerPassword="<password>";

b. Define the service provider information:
dsTitle = "Customer-x Product-y OSLC Service Provider";
dsDescription = "Customer-x Product-y OSLC Service Provider";
provider = "http://<URL>/<myProvider>";
domain = "http://<Domain>/";

c. Use the RDFModel policy function to create the service provider RDF model:
serviceProviderModel = RDFModel();

d. Update the namespace definitions:
RDFModelUpdateNS(serviceProviderModel, "oslc","http://open-services.net/ns/core#");
RDFModelUpdateNS(serviceProviderModel, "dcterms","http://purl.org/dc/terms/");

e. Create the RDF statements and add them to the model:
RDFStatement(serviceProviderModel, provider, "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",
"http://open-services.net/ns/core#ServiceProvider", true);
RDFStatement(serviceProviderModel, provider, "http://purl.org/dc/terms/title", dsTitle, false);
RDFStatement(serviceProviderModel, provider, "http://purl.org/dc/terms/description",
dsDescription, false);
serviceStmt=RDFStatement(serviceProviderModel, null, "http://www.w3.org/1999/
02/22-rdf-syntax-ns#type", "http://open-services.net/ns/core#Service", true);
RDFStatement(serviceProviderModel, serviceStmt.getSubject, "http://open-services.net/ns/
core#domain", domain, true);
RDFStatement(serviceProviderModel, provider, "http://open-services.net/ns/core#service",
serviceStmt.getSubject, true);

log("---------Service Provider RDF---------");
log(RDFModelToString(serviceProviderModel, "RDF/XML-ABBREV"));

f. Use the RDFRegister policy function to register the service provider in the
provider registry.
serviceProviderURL = RDFRegister(RegistryServerProviderCFUri, RegistryServerUsername,
RegistryServerPassword, serviceProviderModel);
log("Registered service provider: " + serviceProviderURL);

2. Create and register an OSLC resource in the resource registry:

254 Netcool/Impact: Solutions Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.psc.doc_1.1.0/psc_ic-homepage.html

a. Define the server information for the resource registry:
RegistryServerResourceCFUri="http://<registry_server>:9080/oslc/rr/
registration/collection";
RegistryServerUsername="<user>";
RegistryServerPassword="<password>";

b. Define the OSLC resource, in this example it represents a computer system:
computerSystem = "http://<OSLC_resource_URL>/mySystemX";
name = "mySystemX";
manufacturer = "VMware";
serialNumber = "422ABA0619B0DE94B02E40870D6462AF";
model = "VMWAREVIRTUALPLATFORM";

The service provider is located at the following URL. You can retrieve this
URL after you register the service provider:
"http://<registry_server>:9080/oslc/providers/1358241368487"

c. Create the RDF model that represents the computer system:
computerSystemModel = RDFModel();
RDFModelUpdateNS(computerSystemModel, "crtv", "http://open-services.net/ns/crtv#");
RDFModelUpdateNS(computerSystemModel, "oslc","http://open-services.net/ns/core#");

RDFStatement(computerSystemModel, computerSystem, "http://www.w3.org/1999/02/
22-rdf-syntax-ns#type",
"http://open-services.net/ns/crtv#ComputerSystem", true);
RDFStatement(computerSystemModel, computerSystem, "http://open-services.net/
ns/crtv#name", name, false);
RDFStatement(computerSystemModel, computerSystem, "http://open-services.net/
ns/crtv#model", model, false);
RDFStatement(computerSystemModel, computerSystem, "http://open-services.net/
ns/crtv#manufacturer", manufacturer, false);
RDFStatement(computerSystemModel, computerSystem, "http://open-services.net/
ns/crtv#serialNumber", serialNumber, false);
RDFStatement(computerSystemModel, computerSystem, "http://open-services.net/
ns/core#serviceProvider", serviceProviderURL , true);

log("---------Computer System RDF---------");
log(RDFModelToString(computerSystemModel, "RDF/XML-ABBREV"));

d. Register the computer system in the resource registry.
registrationRecordURL = RDFRegister(RegistryServerResourceCFUri, RegistryServerUsername,
RegistryServerPassword, computerSystemModel);
log("Registered service provider: " + registrationRecordURL);

OSLC reference topics
Read the following reference information for OSLC.

OSLC urls
You use the following URLs to access OSLC data.

Access data items
http://<server>:<port>/NCICLUSTER_NCI_oslc/data/<datatype>/

Retrieve the OSLC resource shape for the data type
http://<server>:<port>/NCICLUSTER_NCI_oslc/data/resourceShapes/
<datatype>

Run policy and return the results
http://<server>:<port>/NCI_NCICLUSTER_oslc/policy/<policyname>

Access array of variables from policy results
http://<server>:<port>/NCICLUSTER_NCI_oslc/policy/<policyname>/
<variablearray>

Display results for a unique key identifier:
http://<server>:<port>/NCICLUSTER_NCI_oslc/policy/<policyname>/
<function>item;ID=<uniquekeyidentifier>

Chapter 15. Working with OSLC for Netcool/Impact 255

OSLC pagination
The Netcool/Impact OSLC provider supports pagination to make the retrieval of
large amounts of data easier and more efficient.

Pagination is enabled by default for data items and policies whose variables
contain data items. To manually configure pagination, add the following query
parameters to the URL:
?oslc.paging=true&oslc.page=<pagenumber>&oslc.pageSize=<pagesize>

v oslc.paging=true enables pagination. This setting is enabled by default. To
disable pagination, use oslc_paging=false.

v oslc.page=<pagenumber> is the page number. This property is set to page 1 by
default.

v oslc.pageSize=<pagesize> is the page size. This property is set to 100 by
default.

Administrators can add the following statement to the NCI_server.props
configuration file to set the default limit for the page size:
impact.oslc.pagesize=<pagesize>

If this property is not defined, it is set to 100 by default.

If the page size in the URL is greater than the limit that is defined in the
NCI_server.props configuration file, the size is limited to that set in the
NCI_server.props configuration file.

You can also add the oslc_paging=false property to the URL to disable
pagination. If this property is set, the entire result set is returned. If any additional
pagination properties are defined, these properties are ignored. If you disable
pagination and you also enable large data model support, this can have an adverse
affect on performance.

Response information

Two properties are added to the response information: oslc:nextPage and
oslc:totalCount.

The oslc:nextPage property is not returned when there is no next page. If the page
size of the result is smaller than the specified page size property, no next page
property is returned.

The oslc:totalCount property gives the total count information across all the
pages.

Example

For example, the following URL represents the alert variables that belong to the
GetByFilter function events:
http://example.com:9080/NCICLUSTER_NCI_oslc/policy/events/alerts?
oslc.paging=true&oslc.page=2&oslc.pageSize=25

In the URL, pagination is enabled. The variable results are contained in page two.
The page size is limited to 25.

256 Netcool/Impact: Solutions Guide

OSLC security
OSLC security is enabled by default. You can use the configOSLCSecurity script
disable OSLC security.

Disabling OSLC Security

For hover preview to work with other products such as TBSM you have the
following options.
v Enable SSO or LDAP between TBSM and Netcool/Impact. A user must also

have access to the OSLC security role.
v Disable the OSLC security by running the configOSLCSecurity script.

The scripts are in the following directories. For Netcool/Impact
/opt/IBM/tivoli/impact/bin, for TBSM /opt/IBM/tivoli/tbsm/bin.

For Windows, run the following command.
configOSLCSecurity.bat <disable> <Server> <username> <password>

For Netcool/Impact
configOSLCSecurity.bat disable NCI tipadmin tippass

For TBSM
configOSLCSecurity.bat disable TBSM tipadmin tippass

For UNIX, run the following command.
configOSLCSecurity.sh <disable> <Server> <username> <password>

For Netcool/Impact
./configOSLCSecurity.sh disable NCI tipadmin tippass

For TBSM
./configOSLCSecurity.sh disable TBSM tipadmin tippass

To enable OSLC security, replace <disable> with <enable> for each command.

Support for OSLC query syntax
Netcool/Impact supports a version of the query syntax for OSLC. The
implementation in Netcool/Impact supports the oslc.properties and oslc.select
query parameters.

Both query parameters have very similar functionality. The only difference is the
meaning of the identifiers. If the identifiers belong to the starting subject resource,
use oslc.properties. If the identifiers belong to a member list for a resource, use
oslc.select.

For more information about the query syntax for OSLC, see the Open Services for
Lifecycle Collaboration Core Specification Version 2.0 specification
(http://open-services.net/bin/view/Main/OslcCoreSpecification)

oslc.properties query parameter
Use the oslc.properties query parameter to display the properties for an
individual resource URI that does not contain any rdfs:member lists

Chapter 15. Working with OSLC for Netcool/Impact 257

http://open-services.net/bin/view/Main/OslcCoreSpecification

If the identifiers that you want to limit the properties of belong to the starting
subject, use the oslc.properties query parameter to limit the properties that are
returned by the identifiers.

Example

To display properties for an individual resource URI that contains no rdfs:member
list, use the oslc.properties query parameter:
http://<server>:9080/NCICLUSTER_NCI_oslc/data/staff/item;
FNAME=%27Todd%27;LNAME=%27Bishop%27?oslc.properties=foaf:lastName,
foaf:firstName

The URI returns the following information:
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:EMPLOYEES="http://jazz.net/ns/ism/event/impact/data/staff/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#"
xmlns:foaf="http://xmlns.com/foaf/">

<foaf:Person rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff/item;FNAME='Todd';LNAME='Bishop'">

<foaf:lastName>Bishop</foaf:lastName>
<foaf:firstName>Todd</foaf:firstName>

</foaf:Person>
</rdf:RDF>

oslc.select query parameter
If the identifiers that you want to limit the properties of belong to a member list
for a resource, use the oslc.select query parameter.

Use oslc.select to complete the following tasks:
v Limit the properties of a member list that belongs to an OSLC resource. For

example, to limit the properties of a member list that belongs to an OSLC
resource that is generated from a data item.

v Display an OSLC resource that contains rdfs:member lists. For example, to
display the results of a policy function variable.

Data items example

If you query a URL that contains a list of resources that belong to a database table,
the system returns a rdfs:member list for each row. For example, to query the staff
data type and to limit the properties that are contained in the list to the
foaf:lastName and foaf:firstName properties, use the oslc.select query
parameter:
http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff?oslc.select=foaf:lastName,foaf:firstName

This URL returns only the rdfs:member lists that contain the foaf:lastName and
foaf:firstName properties:
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:EMPLOYEES="http://jazz.net/ns/ism/event/impact/data/staff/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#"
xmlns:foaf="http://xmlns.com/foaf/">

258 Netcool/Impact: Solutions Guide

<oslc:ResponseInfo rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff?oslc.select=foaf:lastName,foaf:firstName&
oslc.paging=true&oslc.pageSize=100">

<oslc:totalCount>5</oslc:totalCount>
</oslc:ResponseInfo>
<rdf:Description rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/

staff?oslc.select=foaf:lastName,foaf:firstName">
<rdfs:member>

<foaf:Person rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff/item;FNAME='Mika';LNAME='Masion'">

<foaf:lastName>Masion</foaf:lastName>
<foaf:firstName>Mika</foaf:firstName>

</foaf:Person>
</rdfs:member>
<rdfs:member>

<foaf:Person rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff/item;FNAME='Kevin';LNAME='Doe'">

<foaf:lastName>Doe</foaf:lastName>
<foaf:firstName>Kevin</foaf:firstName>

</foaf:Person>
</rdfs:member>
<rdfs:member>

<foaf:Person rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff/item;FNAME='Todd';LNAME='Bishop'">

<foaf:lastName>Bishop</foaf:lastName>
<foaf:firstName>Todd</foaf:firstName>

</foaf:Person>
</rdfs:member>
<rdfs:member>

<foaf:Person rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff/item;FNAME='Miriam';LNAME='Masters'">

<foaf:lastName>Masters</foaf:lastName>
<foaf:firstName>Miriam</foaf:firstName>

</foaf:Person>
</rdfs:member>
<rdfs:member>

<foaf:Person rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/data/
staff/item;FNAME='Brian';LNAME='Doe'">

<foaf:lastName>Doe</foaf:lastName>
<foaf:firstName>Brian</foaf:firstName>

</foaf:Person>
</rdfs:member>

</rdf:Description>
</rdf:RDF>

Policy variable example

If the starting resource contains the member lists, use the oslc.select query
parameter. For example, if the resource contains a policy variable such as
MyDirectSQL, use oslc.select:
http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl/myDirectSQL2?
oslc.select=myDirectSQL2:num_events

This URL returns the following information:
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:direct="http://policy.js/xmlns/directSQL/"
xmlns:test_ipl="http://jazz.net/ns/ism/event/impact/policy/ipl/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:myDirectSQL2="http://jazz.net/ns/ism/event/impact#policy/

ipl/myDirectSQL2/"
xmlns:impact="http://jazz.net/ns/ism/event/impact#"
xmlns:javascript="http://policy.js/xmlns/">

Chapter 15. Working with OSLC for Netcool/Impact 259

<rdf:Description rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/
policy/ipl/myDirectSQL2?
<oslc.select=myDirectSQL2:num_events">

<rdfs:member>
<test_ipl:myDirectSQL2 rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/

policy/ipl/
myDirectSQL2/item;min_serial=165248;num_events=928;max_serial=387781">

<myDirectSQL2:num_events>928</myDirectSQL2:num_events>
</test_ipl:myDirectSQL2>

</rdfs:member>
</rdf:Description>
<oslc:ResponseInfo rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/

ipl/myDirectSQL2?
<oslc.select=myDirectSQL2:num_events&oslc.paging=true&oslc.pageSize=100">
<oslc:totalCount>1</oslc:totalCount>
</oslc:ResponseInfo>
</rdf:RDF>

Nested variables and wildcard queries
Use wildcard queries to display nested variables.

To display all variables and their nested values, use the following statement:
oslc.properties=*

To display all the variables, their nested values, and the policy functions, use the
following statement:
oslc.properties=*&oslc.select=*

Example

For example, you define a policy and you want to use the following URL to access
it:
http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl

The URL returns the following information:
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:direct="http://policy.js/xmlns/directSQL/"
xmlns:test_ipl="http://jazz.net/ns/ism/event/impact/policy/ipl/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#"
xmlns:javascript="http://policy.js/xmlns/">

<rdf:Description rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl">
<test_ipl:myTimestamp>20120818</test_ipl:myTimestamp>
<test_ipl:myString>test_ipl</test_ipl:myString>
<test_ipl:myInteger>55</test_ipl:myInteger>
<test_ipl:myImpactObjectArray rdf:resource="http://<server>:9080/

NCICLUSTER_NCI_oslc/policy/ipl/myImpactObjectArray"/>
<test_ipl:myImpactObject1 rdf:resource="http://<server>:9080/

NCICLUSTER_NCI_oslc/policy/ipl/myImpactObject1"/>
<test_ipl:myDouble>109.5</test_ipl:myDouble>
<rdf:type rdf:resource="http://jazz.net/ns/ism/event/impact/policy/ipl/"/>

</rdf:Description>
</rdf:RDF>

This example contains several RDF literals such as myTimestamp, myString, and
myInteger. It also contains the myImpactObjectArray RDF resource.

Use the following URL to show all the variables and their nested values:

260 Netcool/Impact: Solutions Guide

http://<server>:9080/NCICLUSTER_NCI_oslc/policy/
ipl?oslc.properties=*

This returns the following information:
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:myImpactObjectArray="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/"
xmlns:myImpactObject1="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObject1/"
xmlns:direct="http://policy.js/xmlns/directSQL/"
xmlns:test_ipl="http://jazz.net/ns/ism/event/impact/policy/ipl/"
xmlns:oslc_pos_2="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/oslc_pos_2/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_pos_1="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/oslc_pos_1/"
xmlns:oslc_pos_0="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/oslc_pos_0/"
xmlns:impact="http://jazz.net/ns/ism/event/impact#"
xmlns:javascript="http://policy.js/xmlns/">

<rdf:Description rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl">
<test_ipl:myTimestamp>20120818</test_ipl:myTimestamp>
<test_ipl:myString>test_ipl</test_ipl:myString>
<test_ipl:myInteger>55</test_ipl:myInteger>
<test_ipl:myImpactObjectArray>

<test_ipl:myImpactObjectArray rdf:about="http://<server>:9080/
NCICLUSTER_NCI_oslc/policy/ipl/myImpactObjectArray">

<myImpactObjectArray:oslc_pos_2>
<myImpactObjectArray:oslc_pos_2 rdf:about="http://<server>:9080/

NCICLUSTER_NCI_oslc/policy/ipl/myImpactObjectArray/oslc_pos_2">
<oslc_pos_2:lname>Doe</oslc_pos_2:lname>
<oslc_pos_2:fname>Kevin</oslc_pos_2:fname>
<oslc_pos_2:email>kdoe@us.ibm.com</oslc_pos_2:email>
<oslc_pos_2:birthday>1973-01-22</oslc_pos_2:birthday>

</myImpactObjectArray:oslc_pos_2>
</myImpactObjectArray:oslc_pos_2>
<myImpactObjectArray:oslc_pos_1>

<myImpactObjectArray:oslc_pos_1 rdf:about="http://<server>:9080/
NCICLUSTER_NCI_oslc/policy/ipl/myImpactObjectArray/oslc_pos_1">

<oslc_pos_1:lname>Doe</oslc_pos_1:lname>
<oslc_pos_1:fname>Danny</oslc_pos_1:fname>
<oslc_pos_1:email>doe@us.ibm.com</oslc_pos_1:email>
<oslc_pos_1:birthday>1976-05-12</oslc_pos_1:birthday>

</myImpactObjectArray:oslc_pos_1>
</myImpactObjectArray:oslc_pos_1>
<myImpactObjectArray:oslc_pos_0>

<myImpactObjectArray:oslc_pos_0 rdf:about="http://<server>:9080/
NCICLUSTER_NCI_oslc/policy/ipl/myImpactObjectArray/oslc_pos_0">

<oslc_pos_0:lname>Doe</oslc_pos_0:lname>
<oslc_pos_0:fname>John</oslc_pos_0:fname>
<oslc_pos_0:email>jdoe@us.ibm.com</oslc_pos_0:email>
<oslc_pos_0:birthday>1980-08-11</oslc_pos_0:birthday>

</myImpactObjectArray:oslc_pos_0>
</myImpactObjectArray:oslc_pos_0>

</test_ipl:myImpactObjectArray>
</test_ipl:myImpactObjectArray>
<test_ipl:myImpactObject1>

<test_ipl:myImpactObject1 rdf:about="http://<server>:9080/
NCICLUSTER_NCI_oslc/policy/ipl/myImpactObject1">

<myImpactObject1:lname>Doe</myImpactObject1:lname>
<myImpactObject1:fname>John</myImpactObject1:fname>
<myImpactObject1:email>jdoe@us.ibm.com</myImpactObject1:email>
<myImpactObject1:birthday>1980-08-11</myImpactObject1:birthday>

</test_ipl:myImpactObject1>

Chapter 15. Working with OSLC for Netcool/Impact 261

</test_ipl:myImpactObject1>
<test_ipl:myDouble>109.5</test_ipl:myDouble>
<rdf:type rdf:resource="http://jazz.net/ns/ism/event/impact/policy/ipl/"/>

</rdf:Description>
</rdf:RDF>

Notice that the myImpactObjectArray array is expanded to show each ImpactObject
that it contains and the property values for each of the ImpactObjects.

To obtain a specific property value for one of the resources, use a URL that
specifies the nested properties. For example:
http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl?oslc.
properties=test_ipl:myImpactObjectArray{myImpactObjectArray:
oslc_pos_0{oslc_pos_0:lname,oslc_pos_0:fname}}

This URL returns the following information:
<rdf:RDF

xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:myImpactObjectArray="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/"
xmlns:myImpactObject1="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObject1/"
xmlns:direct="http://policy.js/xmlns/directSQL/"
xmlns:test_ipl="http://jazz.net/ns/ism/event/impact/policy/ipl/"
xmlns:oslc_pos_2="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/oslc_pos_2/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:oslc_pos_1="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/oslc_pos_1/"
xmlns:oslc_pos_0="http://jazz.net/ns/ism/event/impact/policy/

ipl/myImpactObjectArray/oslc_pos_0/"
xmlns:tivoli-impact="http://jazz.net/ns/ism/event/impact#"
xmlns:javascript="http://policy.js/xmlns/">

<rdf:Description rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/
policy/ipl">

<test_ipl:myImpactObjectArray>
<test_ipl:myImpactObjectArray rdf:about="http://<server>:9080/

NCICLUSTER_NCI_oslc/policy/ipl/myImpactObjectArray">
<myImpactObjectArray:oslc_pos_0>

<myImpactObjectArray:oslc_pos_0 rdf:about="http://<server>:9080/
NCICLUSTER_NCI_oslc/policy/ipl/myImpactObjectArray/oslc_pos_0">

<oslc_pos_0:lname>Doe</oslc_pos_0:lname>
<oslc_pos_0:fname>John</oslc_pos_0:fname>

</myImpactObjectArray:oslc_pos_0>
</myImpactObjectArray:oslc_pos_0>

</test_ipl:myImpactObjectArray>
</test_ipl:myImpactObjectArray>
<rdf:type rdf:resource="http://jazz.net/ns/ism/event/impact/policy/

ipl/"/>
</rdf:Description>

</rdf:RDF>

To obtain resources that contain member lists, like the member lists contained in
the results of the DirectSQL and GetByFilter policy functions, use a combination of
the oslc.properties and the oslc.select query parameters. For example:
http://<server>:9080/NCICLUSTER_NCI_oslc/policy/
ipl?oslc.properties=*&oslc.select=test_ipl:myGetByFilter
{myGetByFilter:LNAME,myGetByFilter:FNAME}

This URL returns the following RDF:

262 Netcool/Impact: Solutions Guide

<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:myGetByFilter="http://jazz.net/ns/ism/event/impact/policy/

ipl/myGetByFilter/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:direct="http://policy.js/xmlns/directSQL/"
xmlns:test_ipl="http://jazz.net/ns/ism/event/impact/policy/ipl/"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:impact="http://jazz.net/ns/ism/event/impact#"
xmlns:javascript="http://policy.js/xmlns/">

<rdf:Description rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/
policy/ipl">

<test_ipl:myTimestamp>20120818</test_ipl:myTimestamp>
<test_ipl:myString>test_ipl</test_ipl:myString>
<test_ipl:myInteger>55</test_ipl:myInteger>
<test_ipl:myGetByFilter>

<test_ipl:myGetByFilter
rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl/myGetByFilter">

<rdfs:member>
<test_ipl:myGetByFilter

rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl/myGetByFilter/
item;FNAME='Mika';LNAME='Masion'">

<myGetByFilter:LNAME>Masion</myGetByFilter:LNAME>
<myGetByFilter:FNAME>Mika</myGetByFilter:FNAME>

</test_ipl:myGetByFilter>
</rdfs:member>
<rdfs:member>

<test_ipl:myGetByFilter
rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl/myGetByFilter/
item;FNAME='Kevin';LNAME='Doe'">

<myGetByFilter:LNAME>Doe</myGetByFilter:LNAME>
<myGetByFilter:FNAME>Kevin</myGetByFilter:FNAME>

</test_ipl:myGetByFilter>
</rdfs:member>
<rdfs:member>

<test_ipl:myGetByFilter
rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl/myGetByFilter/
item;FNAME='Todd';LNAME='Bishop'">

<myGetByFilter:LNAME>Bishop</myGetByFilter:LNAME>
<myGetByFilter:FNAME>Todd</myGetByFilter:FNAME>

</test_ipl:myGetByFilter>
</rdfs:member>
<rdfs:member>

<test_ipl:myGetByFilter
rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl/myGetByFilter/
item;FNAME='Miriam';LNAME='Masters'">

<myGetByFilter:LNAME>Masters</myGetByFilter:LNAME>
<myGetByFilter:FNAME>Miriam</myGetByFilter:FNAME>

</test_ipl:myGetByFilter>
</rdfs:member>
<rdfs:member>

<test_ipl:myGetByFilter
rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/policy/ipl/myGetByFilter/
item;FNAME='Brian';LNAME='Doe'">

<myGetByFilter:LNAME>Doe</myGetByFilter:LNAME>
<myGetByFilter:FNAME>Brian</myGetByFilter:FNAME>

</test_ipl:myGetByFilter>
</rdfs:member>

<oslc:ResponseInfo>
<oslc:ResponseInfo rdf:about="http://<server>:9080/NCICLUSTER_NCI_oslc/

policy/ipl/myGetByFilter<oslc.paging=true&oslc.pageSize=100">
<oslc:totalCount>5</oslc:totalCount>
</oslc:ResponseInfo>

</oslc:ResponseInfo>
</test_ipl:myGetByFilter>
</test_ipl:myGetByFilter>

Chapter 15. Working with OSLC for Netcool/Impact 263

<test_ipl:myDouble>109.5</test_ipl:myDouble>
<rdf:type rdf:resource="http://jazz.net/ns/ism/event/impact#
policy/ipl/"/>
</rdf:Description>
</rdf:RDF>

RDF functions
You can use RDF functions to make Netcool/Impact compatible with open services
for lifecycle collaboration (OSLC).

RDFModel
You can use the RDFModel function to create an RDF model without any runtime
parameters.

To create an empty RDF model, you call the RDFModel function without entering
any runtime parameters. The function returns an empty RDF model.

Syntax

The RDFModel function has the following syntax:
[Model =] RDFModel()

Parameters

The RDFModel function has no runtime parameters.

RDFModelToString
You can use the RDFModelToString function to export an RDF model to a string in a
particular language.

When you create or write an RDF model, you can use the RDFModelToString
function to export a model to a string in a particular language. You can define a
model object and a string that contains the language that is used as runtime
parameters. If the language string is null or an empty string, the default language
RDF/XML is used. The following language strings are supported:
v RDF/XML
v RDF/XML-ABBREV
v TURTLE
v TTL
v N3

RDFModelToString returns a string

Syntax

The RDFModelToString function has the following syntax:
[String =] RDFModelToString (Model, Language)

264 Netcool/Impact: Solutions Guide

Parameters

The RDFModelToString function has the following parameters:

Table 82. RDFModelToString function parameters.

Parameter Type Description

Model Model Model object to output

Language String Language type

The following example updates the namespaces in a model:
//Retrieve the RDF from OSLC provider through the GetHTTP method
HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="https";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName,FormParameters, FilesToSend, HeadersToSend,
HttpProperties);
//Create Model from RDF payload
rdf=RDFParse(x);

//Retrieve all statements from model
allStatements=RDFSelect(rdf,null,null,null);

//Output RDF to log using N3
log(RDFModelToString(rdf, “N3”));

//Output RDF to log using the default language (RDF/XML)
log(RDFModelToString(rdf, null));

RDFModelUpdateNS
You can use the RDFModelUpdateNS function to insert, update, or remove a
namespace from an RDF model.

When you create an RDF model, you can use the RDFModelUpdateNS function to
insert, update, or remove a namespace from the model. You can define a model
object, prefix string, and a URI string as runtime parameters. If the URI is null or
an empty string, the function removes the prefix string from the model. If the URI
contains a string with a non-empty value and the prefix exists, the URI is updated.
If the prefix does not exist, a new prefix and URI is added to the model.
RDFModelUpdateNS returns this model.

Syntax

The RDFModelUpdateNS function has the following syntax:
[Model =] RDFModelUpdateNS (Model, Prefix, URI)

Chapter 15. Working with OSLC for Netcool/Impact 265

Parameters

The RDFModelUpdateNS function has the following parameters:

Table 83. RDFModelUpdateNS function parameters

Parameter Type Description

Model Model Model object to update

Prefix String Contains the prefix to be
updated in the model

URI String Contains the URI to associate
with prefix

The following example updates the namespaces in a model:
//Create model
model = RDFModel();

//Update or insert namespace to model
RDFModelUpdateNS(model,"oslc","http://open-services.net/ns/core#");
RDFModelUpdateNS(model,"rdfs","http://www.w3.org/2000/01/rdf-schma#");
RDFModelUpdateNS(model,"dcterms","http://purl.org/dc/terms/");

The following piece of code deletes an existing model's namespace:
//Retrieve the RDF from OSLC provider through the GetHTTP method
HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="https";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey,
Method, AuthHandlerActionTreeName, FormParameters,
FilesToSend, HeadersToSend, HttpProperties);

//Create Model from RDF payload
model=RDFParse(x);

//Delete namespace from model that has prefix 'oslc'
RDFModelUpdateNS(model, “oslc”, null);

RDFNodeIsResource
You can use the RDFNodeIsResource function to help other functions read and parse
objects that are also an RDF resource. You can define an RDF node as a runtime
parameter in this function. If the object is an RDF resource, the function returns a
true value. If the object is an RDF literal, the function returns a false value. Other
functions can use the model returned by the RDFNodeIsResource function to
continue reading and parsing the RDF object.

Syntax

The RDFNodeIsResource function has the following syntax:
[Boolean =] RDFNodeIsResource (Object)

266 Netcool/Impact: Solutions Guide

Parameters

The RDFNodeIsResource function has the following parameters:

Table 84. RDFNodeIsResource function parameters

Parameter Type Description

Object RDF node RDF object type check

The following example shows statements based on an RDF that is retrieved by the
GetHTTP function:
//Retrieve the RDF from OSLC provider through the GetHTTP method
HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="https";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName, FormParameters, FilesToSend, HeadersToSend,
HttpProperties);

//Create Model from RDF payload
rdf=RDFParse(x);

//Retrieve all statements from model
allStatements=RDFSelect(rdf,null,null,null);

//Output subject, predicate, and objects from all statements returned, whose
object is a literal, to the log

Size=Length(allStatements);
log(Size);
Count=0;
While (Count < Size) {

if (!RDFNodeIsResource (allStatements [Count].object)) {
log (allStatements [Count].subject + " " + allStatements [Count].predicate + " "

+ allStatements [Count].object + ".");
}
Count = Count + 1;

}

RDFNodeIsAnon
You can use the RDFNodeIsAnon function to assist in reading and parsing an RDF.
The RDFNodeIsAnon takes in a subject/object containing an RDFNode as a runtime
parameter and returns true if the resource is anonymous. If the return value is
false, the RDF resource is not anonymous. The model generated by the function
can then be used by other functions to continue reading and parsing the RDF.

RDFNodeIsAnon returns true or false, depending if the RDFNode is anonymous

Syntax

The RDFNodeIsAnon function has the following syntax:
[Boolean =] RDFNodeIsAnon (Node)

Chapter 15. Working with OSLC for Netcool/Impact 267

Parameters

The RDFNodeIsAnon function has the following parameter:

Table 85. RDFNodeIsAnon parameter

Parameter Type Description

Node RDFNode Subject or object to check for

//Retrieve the RDF from OSLC provider through the GetHTTP method
HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="http";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=newobject();
FilesToSend=newobject();
HeadersToSend=newobject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName,FormParameters, FilesToSend, HeadersToSend,
HttpProperties);

//Create Model from RDF payload
rdf=RDFParse(x);

//Retrieve all statements from model
allStatements=RDFSelect(rdf,null,null,null);

//Output subject, predicate, and objects from all statements returned,
whose object is a literal, to the log

Size=Length(allStatements);
Log(Size);
Count=0;
While (Count < Size) {

if (!RDFNodeIsAnon(allStatements[Count].subject)) {
log (allStatements [Count].subject + " " + allStatements [Count].predicate + " "

+ allStatements
[Count].object + ".");

}
Count = Count + 1;

}

RDFParse
You can use the RDFParse function to help other functions read and parse an RDF
object. It retrieves the data from a string that contains an RDF payload and returns
a model that contains the RDF payload passed to it. Other functions can use this
model to further read and parse an RDF object.

Syntax

The RDFParse function has the following syntax:
[Model =] RDFParse(Payload)

268 Netcool/Impact: Solutions Guide

Parameters

The RDFParse function has the following parameters:

Table 86. RDFParse function parameter

Parameter Type Description

Payload String Payload containing the RDF

The following example provides statements based on an RDF that is retrieved by
the GetHTTP function:
//Retrieve the RDF from OSLC provider through the GetHTTP method
HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="https";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName, FormParameters, FilesToSend, HeadersToSend,
HttpProperties);

//Create Model from RDF payload
rdf=RDFParse(x);

RDFRegister
You can use the RDFRegister function to help you to register service providers or
OSLC resources with the registry server.

Before you can register a service provider or resource, you must use the other RDF
policy functions to build an RDF model that meets the OSLC and Registry Services
requirements.

After you build the RDF model, use the RDFRegister function to register the RDF
with the resource registry contained in the Registry Services integration service.

If the service provider or OSLC resource is registered successfully, the RDFRegister
function returns the resource location of the registration record. The following
variables and their return values are also returned to provide more information:
v ResultCode contains the result code for the response.
v HeadersReceived contains the headers received in the response.
v HeadersSent contains the headers sent in the response.
v ResponseBody contains the response body text.

If the query parameters are set in the URL and you use the RDFRegister policy
function to register a service provider, you must manually add the location of the
service provider to the policy. For example:
RDFStatement(newModel, manu[0].subject, "http://open-services.net/ns/
core#serviceProvider", serviceProviderURL, true);

Chapter 15. Working with OSLC for Netcool/Impact 269

If you use the query string inside the path, you must also ensure that the
FormParameters parameter is set to null. For example:
FormParameters=null;

Finally, you must ensure that the policy contains pagination information. For
example:
Path="/NCICLUSTER_NCI_oslc/data/mysql1?oslc.paging=true&oslc.pageSize=100";

If unsuccessful, the return value of the resource location registration record is null.
Error code information is retuned in the ErrorReason and ResultCode variables.

Syntax

The RDFRegister function has the following syntax:
[String =] RDFRegister(URI, Username , Password, Model)

where Username can be a null or void string to specify that no authentication is
required.

Parameters

The RDFRegister function has the following parameters:

Table 87. RDFRegister function parameters

Parameter Type Description

URI String Registry Services server
creation factory URI

Username String User name for the Registry
Services server

Password String Password for the Registry
Services server

Model Model Model that contains the RDF

Example

The following example manually registers a service provider and a set of resources
that have been exposed by the OSLC server provider in Netcool/Impact.

The Registry Services server information is as follows:
RegistryServerProviderCFUri="http://<registry_services_server>:
9080/oslc/pr/collection";
RegistryServerResourceCFUri="http://<registry_services_server>:
9080/oslc/rr/registration/collection";
RegistryServerUsername="system";
RegistryServerPassword="manager";

The Netcool/Impact server information is as follows:
HTTPHost="<impact_server>";
HTTPPort=9080;
Protocol="http";
Path1="/NCICLUSTER_NCI_oslc/provider/provider01";
Path2="/NCICLUSTER_NCI_oslc/data/computer";
ChannelKey="";
Method="GET";
AuthHandlerActionTreeName="";

270 Netcool/Impact: Solutions Guide

FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
HttpProperties.AuthenticationScheme="basic";

Get the service provider RDF from Netcool/Impact:
serviceProviderResponse=GetHTTP(HTTPHost,HTTPPort, Protocol, Path1,
ChannelKey,Method, AuthHandlerActionTreeName, null, FilesToSend,
HeadersToSend,HttpProperties);

Create an RDF model that is based on the service provider response:
serviceProviderModel=RDFParse(serviceProviderResponse)

Register the service provider in the provider registry:
serviceProviderURL = RDFRegister(RegistryServerProviderCFUri,
RegistryServerUsername, RegistryServerPassword,serviceProviderModel);
log("Provider Registry-Service Provider URL: " + serviceProviderURL);

Get all the computer system resources from Netcool/Impact:
allResources=GetHTTP(HTTPHost,HTTPPort, Protocol, Path2, ChannelKey,
Method,AuthHandlerActionTreeName, null, FilesToSend, HeadersToSend,
HttpProperties);

Create an RDF model that is based on the resource response:
allResourceModel=RDFParse(allResources);

Register each computer system and a set of properties with the resource registry:
statements=RDFSelect(allResourceModel, null, "http://jazz.net/ns/ism/
events/impact/data/computer/ID", null);
size=Length(statements);
count=0;
while(count<size) {
Path3=statements[count].subject;
//Get the individual computer system resource
resourceResponse=GetHTTP(HTTPHost,HTTPPort, Protocol, Path3, ChannelKey,
Method,AuthHandlerActionTreeName, null, FilesToSend, HeadersToSend,
HttpProperties);
resourceModel=RDFParse(resourceResponse);

Create a model that contains the properties and data that you want to register:
newModel=RDFModel();
manu=RDFSelect(resourceModel, null, "http://open-services.net/ns/
crtv#manufacturer",null);
model=RDFSelect(resourceModel, null, "http://open-services.net/ns/
crtv#model", null);
serial=RDFSelect(resourceModel, null, "http://open-services.net/ns/
crtv#serialNumber", null);
RDFModelUpdateNS(newModel, "crtv", "http://open-services.net/ns/crtv#");
RDFModelUpdateNS(newModel, "oslc","http://open-services.net/ns/core#");
RDFStatement(newModel, manu[0].subject, "http://www.w3.org/1999/02/
22-rdf-syntax-ns#type",
"http://open-services.net/ns/crtv#ComputerSystem", true);
RDFStatement(newModel, manu[0].subject, manu[0].predicate, manu[0].object,
RDFNodeIsResource(manu[0].object));
RDFStatement(newModel, manu[0].subject, model[0].predicate, model[0].object,
RDFNodeIsResource(manu[0].object));
RDFStatement(newModel, manu[0].subject, serial[0].predicate,
serial[0].object, RDFNodeIsResource(manu[0].object));

Chapter 15. Working with OSLC for Netcool/Impact 271

Update the model with the service provider location:
RDFStatement(newModel, manu[0].subject, "http://open-services.net/ns/
core#serviceProvider", serviceProviderURL, true);

Register the resource in the resource registry:
resourceURL = RDFRegister(RegistryServerResourceCFUri,
RegistryServerUsername, RegistryServerPassword, newModel);
log("Resource Registry-Resource URL: " +resourceURL);

count=count+1;
}

RDFUnRegister
To remove the registration record of a service provider or resource from the
registry server, use the RDFUnRegister function to supply the location of the
registration record, the Registry Services server username and password, and the
registration record that you want to remove.

Before you can remove the registration record of a service provider, you must
remove all the registration records for the associated OSLC resources.

If successful, the RDFUnRegister function returns the message code 204 and the
value true. The following variables and their return values are also returned to
provide additional information:
v ResultCode contains the result code for the response.
v HeadersReceived contains the headers received in the response.
v HeadersSent contains the headers sent in the response.
v ResponseBody contains the response body text.

If unsuccessful, the return value of the resource location registration record is false.
Error code information is returned in the ErrorReason and ResultCode variables.

Syntax

The RDFUnRegister function has the following parameters:
[String =] RDFUnRegister(URI, Username , Password)

where Username can be a null or void string to specify that no authentication is
required.

Parameters

Table 88. RDFUnRegister function parameters

Parameter Type Description

URI String Location that contains the
registration record for the
resource or service provider

Username String User name for the Registry
Services server

Password String Password for the Registry
Services server

272 Netcool/Impact: Solutions Guide

Example of how to remove the registration of a service provider

The following example demonstrates how to remove the registration of the service
provider.

The service provider location is:
http://<registryserver>:9080/oslc/providers/6577

Use the RDFUnRegister function to remove the registration. For example:
//Registry server information
ServiceProviderUri="http://<registryserver>:9080/oslc/
providers/6577";
RegistryServerUsername="system";
RegistryServerPassword="manager";
result = RDFUnRegister(ServiceProviderUri, RegistryServerUsername,
RegistryServerPassword);

Example of how to remove the registration of an OSLC resource

The following example demonstrates how to use the policy function to remove the
registration of an OSLC resource.
registrationURL = "http://nc004075.romelab.it.ibm.com:16310/oslc/registration/
1351071987349";
providerURL = "http://nc004075.romelab.it.ibm.com:16310/oslc/providers/
1351071987343";
RegistryServerUsername="smadmin";
RegistryServerPassword="tbsm01bm";

returnString = RDFUnRegister (registrationURL, RegistryServerUsername,
RegistryServerPassword);

RDFSelect
You can use the RDFSelect function to assist in reading and parsing an RDF. To
retrieve statements based on an RDF model, you call the RDFSelect function and
pass the RDF model that is created by the RDFParse function. You can filter based
on subject, predicate, and object.

The RDFSelect function returns an array of statements that are based on the filter,
retrieving values for the subject, predicate, and object variables. You can use it to
create RDF statements or triples. You can also use it to filter statements. If you do
not want to filter your results, you specify null or empty values for the runtime
parameters.

Syntax

The RDFSelect function has the following syntax:
[Array =] RDFSelect(Model, Subject, Predicate, Object)

Parameters

The RDFSelect function has the following parameters:

Table 89. RDFSelect function parameters

Parameter Type Description

Model Model The model that contains the
RDF payload

Chapter 15. Working with OSLC for Netcool/Impact 273

Table 89. RDFSelect function parameters (continued)

Parameter Type Description

Subject String Filters for the subject value
in RDF statements

Predicate String Filters for the predicate value
in RDF statements

Object String Filters for the object value in
RDF statements

The following example provides statements based on an RDF that is retrieved by
the GetHTTP function:
//Retrieve the RDF from OSLC provider through the GetHTTP method
HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="https";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName, FormParameters, FilesToSend, HeadersToSend,
HttpProperties);

//Create Model from RDF payload
rdf=RDFParse(x);

//Retrieve all statements from model
allStatements=RDFSelect(rdf,null,null,null);

//Output subject, predicate, and objects from all statements returned to the log
Size=Length(allStatements);
log(Size);
Count=0;
While (Count < Size) {

log (allStatements [Count].subject + " " + allStatements [Count].predicate + "
" + allStatements [Count].object + ".");
Count = Count + 1;

}

The following piece of code provides all statements that contain a particular
subject name:
//Retrieve the RDF from OSLC provider through the GetHTTP method
HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="https";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";

274 Netcool/Impact: Solutions Guide

x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName, FormParameters, FilesToSend,
HeadersToSend, HttpProperties);

//Create Model from RDF payload
rdf=RDFParse(x);

//Retrieve statements containing subject from model
statements=RDFSelect(rdf,”
http://ibm.com/ns/netcool-impact/data/SCR_Components#MYCLASS”,null,null);

//Output subject, predicate, and objects from all statements returned to the log
Size=Length(stmt);
log(Size);
Count=0;
While (Count < Size) {

log (stmt[Count].subject + " " + stmt[Count].predicate + " " +
stmt[Count].object + ".");

Count = Count + 1;
}

RDFStatement
You can use the RDFStatement function to create and add statements to an RDF
model.

You specify the following parameters in the function:
v Model object
v Subject string or resource
v Predicate string or property
v Object string or RDF node

If the Object runtime parameter is a string, you must specify a flag to determine
whether the object input parameter is RDF literal or an RDF resource type

To create an anonymous resource in the statement, define the value for the Subject
as null. When this parameter value is set to null, the policy function creates an
anonymous resource in the statement.

Syntax

The RDFStatement function has the following syntax:
[Statement =] RDFStatement (Model, Subject, Predicate, Object, isResource)

Parameters

If the Object runtime parameter is a string, you must specify the isResource
parameter. The RDFStatement function has the following parameters:

Table 90. RDFStatement function parameters

Parameter Type Description

Model Model Model object that the
statement is added to.

Chapter 15. Working with OSLC for Netcool/Impact 275

Table 90. RDFStatement function parameters (continued)

Parameter Type Description

Subject String, resource, or null Subject value of statement. If
this parameter is set to null,
the function creates an
anonymous resource in the
statement. The policy
function returns a statement
instead of a model.

Predicate String or property Predicate value of statement.

Object String or RDF node Object value of statement.

isResource Boolean Determines whether an
object is a resource or a
literal.

The following example shows how to create a basic RDF with a single statement.
1. Use the RDFModel policy function to create a model:

Model = RDFModel();
RDFModelUpdateNS(model,"oslc","http://open-services.net/ns/core#");

subject = "http://ibm.com/ns/netcool-impact/data/SCR_Components#MYCLASS";
property = "http://open-services.net/ns/core#name";
value = "Brian";
isResource = false;

2. Use the RDFStatement policy function to create a statement:
RDFStatement(model,subject,property,value,isResource);

3. Finally, specify how the RDF model is output:
body = RDFModelToString(model, null);

4. Finally, specify how the RDF model is output:
body = RDFModelToString(model, null);

The following example shows how to create a model that is based on an existing
model and that uses only the subjects that the user is interested in:
1. Use the GetHTTP method to retrieve the RDF from the OSLC provider:

HTTPHost="omega02.tivlab.austin.ibm.com";
HTTPPort=9081;
Protocol="https";
Path="/NCICLUSTER_NCI_oslc/data/resourceShapes/alerts";
ChannelKey="tom";
Method="";
AuthHandlerActionTreeName="";
FormParameters=NewObject();
FilesToSend=NewObject();
HeadersToSend=NewObject();
HttpProperties = NewObject();
HttpProperties.UserId="tipadmin";
HttpProperties.Password="passw0rd";
x=GetHTTP(HTTPHost, HTTPPort, Protocol, Path, ChannelKey, Method,
AuthHandlerActionTreeName, FormParameters, FilesToSend,
HeadersToSend, HttpProperties);

2. Create the RDF model from the RDF payload:
rdf=RDFParse(x);

3. Define a subject to filter:
mySubject=” http://ibm.com/ns/netcool-impact/data/SCR_Components#ID”;

276 Netcool/Impact: Solutions Guide

4. Retrieve all the statements that contain mySubject from the model:
allStatements=RDFSelect(rdf,mySubject,null,null);

5. Use the RDFModel function to create a new model:
newModel = RDFModel()

6. Use the RDFModelUpdateNS function to add the required namespaces to the
model:
RDFModelUpdateNS(newModel,"oslc","http://open-services.net/ns/core#");
RDFModelUpdateNS(newModel,"rdfs","http://www.w3.org/2000/01/rdf-schma#");
RDFModelUpdateNS(newModel,"dcterms","http://purl.org/dc/terms/");

7. Use the RDFStatement function to add the statements from the old model to the
new model
Size=Length(stmt);
Count=0;
While (Count < Size) {

RDFStatement(newModel, stmt[Count].subject, stmt[Count].predicate,
stmt[Count].object,IsRDFNodeResource(stmt[Count].object));
Count = Count + 1;
}

8. Output the new model to the log:
log(RDFModelToString(model, null));

Chapter 15. Working with OSLC for Netcool/Impact 277

278 Netcool/Impact: Solutions Guide

Chapter 16. Service Level Objectives (SLO) Reporting

Service Level Objectives (SLO) Reporting is an optional feature that you can set up
in the existing Netcool/Impact 6.1.1 product. The SLO Reporting package provides
policies and schema files, which you can use to store Service Level Metrics in a
DB2 database. These metrics are used to generate a report.

SLO Reporting uses Tivoli Common Reporting to develop, create, and generate
reports. Tivoli Common Reporting consists of data stores, reporting engines, their
corresponding web user interfaces displayed in Dashboard Application Services
Hub, and a command-line interface. For more, information about Tivoli Common
Reporting, see the Jazz for Service Management documentation.

Configuring SLO reporting

The SLO reporting function can be configured in 2 ways:

SLO reporting for TBSM
This feature is primarily intended for use with Tivoli Business Service
Manager (TBSM). Use the feature to create SLO reports that display the
outage times for business services in TBSM.

SLO reporting for third-party data
You can also configure SLO reporting to report on data from a third-party
database.

To configure SLO reporting, you need to complete the following steps:
1. Create a database that is called SLORPRT in your DB2 database.
2. Install the SLO reporting features.
3. Define the service definitions in the service definition properties file.
4. Define the business calendar in the business calendar properties file. This is

optional.
5. Run the createServiceDefinition policy to create the service definition.
6. Create policies to retrieve the outage data from the specified data source and

record it in the SLORPRT database. If you want to configure SLO reporting
with TBSM, you can use the sample policies that are provided.

7. Deploy the SLO Availability report in Tivoli Common Reporting.

Architecture

SLO consists of 3 components:
v The SLORPRT database that you use to store the SLO definitions and outage

data that is gathered for those definitions.
v Projects in Netcool/Impact that contain functions for interacting with the

SLORPRT database.
v The SLO Availability report definition for Tivoli Common Reporting.

You need to decide which of your business services that you want to report on and
the metrics that need to be associated with the services. These metrics are used in
the availability report in Tivoli Common Reporting.

© Copyright IBM Corp. 2006, 2016 279

First, you define the business services that are displayed in the report in the
SLORPRT database.

Next you can either use the sample policies, or define your own policies, to collect,
analyze, and record outage data in the SLORPRT database.

The SLO Availability Report uses the outage data to display the availability for a
specified period.

The following graphic illustrates this architecture:

SLO terminology overview
Before you start to configure SLO reporting, read the following terms to help you
to understand the solution.

Business service
A business service is an aspect of your enterprise, like Internet Banking
and Payroll, that is defined in Tivoli Business Service Manager. You choose
one or more of these business services to report on.

Service definitions
Service definitions are used to specify metadata for the service and metric
combinations. Service definitions are defined in Impact. The SLO
Availability report in Tivoli Common Reporting uses the service definition
for reporting.

Service Level Agreements (SLAs)
A service level agreement defines a metric and a set of operational hours
where the service is required to be available. The SLAs are defined as part
of a service definition.

Metric A measurable property for a service. For example, you can create metrics
to monitor downtime or transaction volume. The SLO Availability report in
Tivoli Common Reporting uses the metric to display the availability of the
business service based on the metrics that you specify. A metric is specified
in an SLA definition.

Operational hours
The operational hours defines the hours during which the business service
is expected to be available. The availability report summarizes the

280 Netcool/Impact: Solutions Guide

percentage of time the service was available during the operational hours.
Operational hours are defined as part of the service or SLA definition.

Calendar
A calendar indicates the days in a year that are holidays and weekends. If
a calendar is defined as part of a service definition, outages that occur in
these periods are recorded separately in the SLORPRT database. Calendars
are specified in a properties file that is passed to an Impact policy that
stores the definition.

SLO reporting prerequisites
Before you install the SLO Reporting package, complete the prerequisites.
v Netcool/Impact 6.1.1.5 must be installed and configured before the SLO Reports

package can be applied. The Reports package extensions are a set of policies,
data source, and data type configurations.

v The version of DB2 must be 9.7 Fix pack 4 or later, which is available as a
bundle with Netcool/Impact.

v Tivoli Common Reporting version 3.1 or higher is required to install the SLO
Reports package.

v You must create a database named SLORPRT in the DB2 system and catalog the
TCPIP remote node and the remote database. If a local version of DB2 does not
exist on the Tivoli Common Reporting (TCR) server, install the IBM DB2
Connect Server that is available as part of the fix pack installers for DB2 Server,
Enterprise and Workstation.

Installing and enabling SLO report package
How to install and enable the Netcool/Impact SLO extensions in Tivoli Common
Reporting.

Before you begin
v Netcool/Impact 6.1.1.4 must be installed and configured before the SLO Reports

package can be applied. The Reports package extensions are a set of policies,
data source, and data type configurations.

v The version of DB2 must be 9.7 Fix pack 4 or later, which is available as a
bundle with Netcool/Impact.

v Tivoli Common Reporting version 3.1 or higher is required to install the SLO
Reports package.

v You must create a database named SLORPRT in the DB2 system and catalog the
TCPIP remote node and the remote database. If a local version of DB2 does not
exist on the Tivoli Common Reporting (TCR) server, install the IBM DB2
Connect Server that is available as part of the fix pack installers for DB2 Server,
Enterprise and Workstation.

About this task

The SLO Reports package is in the install_home/impact/add-ons/slo directory.

The importData, sloutility, db, and Report directories are included in the SLO
Reports package.

Chapter 16. Service Level Objectives (SLO) Reporting 281

Procedure
1. Create the SLORPRT database in DB2. For example:

db2 create database SLORPRT using CODESET UTF-8 territory en-US

If a local version of DB2 does not exist on the Tivoli Common Reporting server,
install the IBM DB2 Connect Server that is available as part of the fix pack
installers for DB2 Server, Enterprise and Workstation.

2. The db directory contains an sql file. Connect to the database and add this file
to the same system where the SLORPRT database is created. For example:
db2 connect to SLORPRT
db2 -tvf slo_dbschema.sql
db2 connect reset

3. Import the SLA and SLA_Utility projects.
Navigate to <TBSM_HOME>/bin and run the following command:
nci_import.[bat/sh] <servername> IMPACT_HOME/add-ons/slo/importData

For example:
./nci_import TBSM /opt/IBM/tivoli/impact/add-ons/slo/importData

Then run the following command:
nci_import.[bat/sh] <servername> IMPACT_HOME/add-ons/slo/sloutility

For example:
./nci_import TBSM /opt/IBM/tivoli/impact/add-ons/slo/sloutility

4. The Report directory contains the model to be used in the Framework Manager
in Tivoli Common Reporting. The model is provided for your reference. Use
the model if you want to extend the schema or create more views for the
report.

5. The Report package contains the package that must be imported in to the Tivoli
Common Reporting Server. The package contains the sample report and the
queries that can be used to generate the reports. Complete the following steps
to import the Netcool/Impact SLO reports package into Tivoli Common
Reporting version 3.1.
a. Navigate to the Tivoli Common Reporting bin directory. For example,

/opt/IBM/JazzSM/reporting/bin.
b. Use the trcmd command to create a data source for the SLORPRT database:

trcmd.sh -user <TCR user> -password <TCR password>
-datasource -add SLORPRT -connectionString <db2 connection string>
-dbType DB2 -dbName <database name>
-dbLogin <database username> -dbPassword <database password>

For example:
./trcmd.sh -user tipadmin -password password1 -datasource -add SLORPRT
-connectionString jdbc:db2://server.ibm.com:50000/SLORPRT
-dbType DB2 -dbName SLORPRT -dbLogin db2inst1 -dbPassword password1

c. Use the trcmd command to import the Netcool/Impact SLO report package:
./trcmd.sh -import -bulk <file> -user <TCR User>
-password <TCR password>

For example:
./trcmd.sh -import -bulk /tmp/ImpactSLOReportPackage.zip -user smadmin
-password password2

6. In Netcool/Impact, configure the SLOReportDatasource and
SLOUtilityDatasource data sources to access the SLORPRT database that you

282 Netcool/Impact: Solutions Guide

created in step 1. The SLOReportDatasource is available in the SLA project in
Netcool/Impact, and the SLOUtilityDatasource is available in the SLA_Utility
project.

What to do next

The SLO reporting package is installed and enabled. Next, you need to create the
service definitions files.

Defining service definition properties
Before you can view reports for a service, you need to define the service definition
parameters.

About this task

You specify the service definition parameters, like the SLA metric names and the
operational hours, in a service definition properties file that you create. After you
create the properties file, you need to run the createServiceDefinition policy and
pass the service definition to it as an input parameter. When you run the policy,
the service definition is implemented.

In some cases, you might want to reuse service definitions and metric names. You
need to note the following logic:
v You can reuse the same service definition in multiple service definition

properties files to define multiple SLAs. The properties that describe the service
like the label and description, are specified by the last properties file used for
the service.

v If you use the same SLA metric name in multiple service definitions, only the
last settings are used, including any operational hours or time zone properties.
Each service must include the complete definition for the SLA and it needs to
match any previous definition.

For example service definition properties files, see “Properties files examples” on
page 300.

Procedure
1. Log in to the server where the Impact Server server was installed.
2. Create a service definition properties file. Note the file name. You need to

specify the file name as a parameter value in the policy that you use to
implement the service definition properties.

3. Specify the parameters in the services definition file. For more information, see
“Service definition properties file” on page 284. Service definition names and
service level agreement (SLA) names must be unique in the SLORPRT database.

4. Save the file.

What to do next

After you define the service definition properties in the properties file, run the
createServiceDefinition policy to implement the service definition. You need to
specify the directory where you saved the file in step 2 in the Service Definition
File Name parameter.

Chapter 16. Service Level Objectives (SLO) Reporting 283

If you want to update properties of the service definitions, just update the
properties file and rerun the createServiceDefinition policy to create the service
definition. The new definition will replace the existing definition.

If you want to delete a service definition or an SLA defined in the service, refer to
“SLO Utility Functions” on page 306.

Service definition properties file
Use the service definition properties file to define a service definition.

Naming conventions

Properties use the following naming conventions:
<propertyName>.num

This indicates that multiple sets of related properties are specified. For example,
sla.num=2 indicates that there are two sets of related properties. The related
properties are named sla.1.<propertyName>, sla.2.<propertyName>, and so on.

To nest multiple properties, use <propertyName>.n.<relatedPropertyName>.num. For
example, sla.1.operationalHour.num=2 specifies two sets of operational hour
values for the first SLA definition.

General properties

Table 91. General properties in the service definition properties file

Property Description

serviceName The name of the service for which the service
level agreement (SLA) definitions are provided.
The name must be unique. This is a required
property.

label Display name for the service. This is optional. If
you do not specify a value, the value defaults
to an empty string.

description Description for the service. This is optional. If
you do not specify a value, the serviceName
value is used.

businessCalendar Defines the name of the business calendar that
is used by the SLAs defined for the service. If
no calendar is specified, the outage time for the
service is defined only as operational or
non-operational. There is no holiday outage.

For more information, see “Configuring
business calendars” on page 289.

284 Netcool/Impact: Solutions Guide

Operational hours properties

Table 92. Operational hours properties in the service definition properties file

Property Description

operationalHour.num Defines the number of operational hour periods
that can be defined for the service. If this is not
specified, at least 1 period is defined for the
service. If the value is set, you need to specify a
start and end time for the number of periods
that are specified in this parameter.

operationalHourStartTime The start time of a single operational hours
period. You must specify values in the 24-hour
clock format, for example, 13:00:00. If no value
is specified, the default value 00:00:00 is
assigned. This value is used for any SLAs that
do not include operational hours.

operationalHourEndTime The end time of a single operational hours
period. You must specify values in the 24-hour
clock format, for example, 17:00:00. If no value
is specified, the default value 23:59:59 is
assigned.

operationalHourStartTime.n The start time of the operational period n. You
must specify values in the 24-hour clock format,
for example, 13:00:00. If this parameter is not
specified, the operational hour period is not
defined.

operationalHourEndTime.n The end time of the operational period n. You
must specify values in the 24-hour clock format,
for example, 17:00:00. If this parameter is not
specified, the operational hour period is not
defined.

Identity Properties

Table 93. Identity properties in the service definition properties file

Property Description

identity.num Defines the number of identities that are
defined for a service. If you specify a value for
this property, you must specify the required
values for the same number of identity types.

identity An identity represents an alternative method
for identifying a service when it gathers the
outage data for the service. An identity is
defined as identityType:::identityString. If
you only specify a service name, the default
identity is tbsmIdentity:::servicename. If no
identity is specified, the service definition
cannot be created. For TBSM services, use the
instance name as the identity. The type defaults
to tbsmIdentity.

Chapter 16. Service Level Objectives (SLO) Reporting 285

Table 93. Identity properties in the service definition properties file (continued)

Property Description

identity.n The identity type and string for identity n. This
is required if you specify a value for the
identity.num parameter. If any required
identity is not included, the service definition
cannot be created.

For example, you can use multiple identities if
the outage data is gathered from multiple data
sources. In this example, you are receiving data
from another monitoring system. You define the
identities as:

identity.num=2
identity.1=internetBanking
identity.2=MSN:::IB001

where the identity type is MSN for Managed
System Name (MSN). IB001 is the value that is
specified for the MSN.

SLA Properties

Table 94. SLA properties in the service definition properties file

Property Description

sla.num Defines the number of SLA definitions. If this
property is set, you must specify a matching
number of SLA definitions.

sla.name The name of the SLA. This is also used as the
metric name that is listed as an option in the
SLO Availability report. The name is required
and must be unique.

Note: If an SLA exists that uses the same name,
the existing SLA is updated with the new
properties based on the current service
definition. No properties are inherited from the
definition that is saved in the SLORPRT
database.

sla.n.name The name of the nth SLA in the service
definition file. This is also used as the metric
name that is listed as an option in the SLO
Availability report. This parameter is required if
the sla.num parameter is specified. The SLA
definition is not used if the sla.n.name
parameter is not defined.

The name must be unique.

Note: If an SLA exists that uses the same name,
the existing SLA is updated with the new
properties based on the current service
definition. No properties are inherited from the
definition that is saved in the SLORPRT
database.

286 Netcool/Impact: Solutions Guide

Table 94. SLA properties in the service definition properties file (continued)

Property Description

sla.displayName, sla.n.displayName The label for the metric that is associated with
the SLA. If you do not specify a value for the
display name, the default empty string is used.

sla.description, sla.n.description The description for the metric that is associated
with this SLA. If no value is specified, the
default empty string is used.

sla.timezone, sla.n.timezone Time zone that is used by the SLA. If you do
not specify a value, GMT is used by default.

The time zone ID must be a valid value. For
more information, see “Configuring the time
zone.”

sla.operationalHourThreshold,
sla.n.operationalHourThreshold

An availability threshold for operational hours
in the SLA. You specify a numeric percentage,
for example 98.5. The threshold value is
displayed in the SLO Availability report. The
default is zero.

sla.nonOperationalHourThreshold,
sla.n.nonOperationalHourThreshold

An availability threshold for non-operational
hours in the SLA. You specify a numeric
percentage, for example 98.5. The threshold
value is displayed in SLO Availability report.
The default is zero.

sla.operationalHour.num Defines the number of operational hour periods
that are defined for the SLA. If a value is not
specified, then at most 1 operational hour
period is defined for the SLA.

sla.operationalHourStartTime,
sla.operationalHourStartTime.n

The start time of a single operational hour
period. You must specify the value in 24-hour
clock format. For example, 08:00:00 for 8 AM.

sla.operationalHourEndTime,
sla.operationalHourEndTime.n

The end time of a single operational hour
period. You must specify the value in 24-hour
clock format. For example, 17:00:00 for 5 PM.

sla.n.operationalHourStartTime,
sla.n.operationalHourStartTime.n

The start time of a single operational hour
period for the nth SLA. You must specify the
value in 24-hour clock format. For example,
08:00:00 for 8 AM.

sla.n.operationalHourEndTime,
sla.n.operationalHourEndTime.n

The end time of a single operational hour
period for the nth SLA. You must specify the
value in 24-hour clock format. For example,
17:00:00 for 5 PM.

For examples of using properties file, see “Properties files examples” on page 300.

Configuring the time zone
If a single business service operates in multiple time zones, you can specify a
timezone in the SLA definition that is included in the service definition for the
business service.

Chapter 16. Service Level Objectives (SLO) Reporting 287

About this task

The time zone value is used to modify how the business calendar and the
operational hours are interpreted by the service definition. Netcool/Impact
includes utility functions that you can call to log information that helps you to
choose the time zone you need.

This setting is optional. It is not required for the service definition to work.

Procedure
1. Specify the time zone value in the service definition properties file. For more

information, see the documentation about the sla.timezone property in
“Service definition properties file” on page 284.

2. To get information about the available time zone identifiers, create a policy that
calls the utility functions.

3. Use the sample code to help you to create the policy that calls the utility
function.
To log information about all the time zone IDs, add the following function:
/*
* Log information for all time zones.
*/
function logAllTimeZoneInfo()

To log information about a specific time zone ID, add the following function:
/*
* Log information for a specific time zone id
*/
function logTimeZoneInfo(<timezone_id>)

where <timezone_id> is the ID of the time zone.
To log information for all the time zone IDs that use a specific offset, add the
following function:
/*
* Log information for time zones with a specific offset from GMT.
*/
function logTimeZoneInfoForOffset(<hours>)

For example, you can use the following policy to load the utility function and
log the timezone IDs:
/* This statement is required for the utility functions
/* to be loaded. */
Load("serviceDefinition");

Log(0,"Starting policy timeZoneInfoLogger");

/* Uncomment the function you need to help you pick
a time zone id */

/* Call a function to log information about all valid
/* time zones */
/* logAllTimeZoneInfo(); */

/* Call a function to log information about a specific
/* time zone.*/
/* Replace "TimeZoneID" with the ID for which you
/* need information. */
/* logTimeZoneInfo("TimeZoneID"); */

/* Call a function to log information about time zones
/* offset by n hours from GMT. Replace "offset" */

288 Netcool/Impact: Solutions Guide

/* with a number of hours offset from GMT. For example,
/* 5, +6, -3, -2.5 are valid offsets.*/
/* logTimeZoneInfoForOffset(offset); */

4. Save your changes.
5. Run the policy. The time zone information that you requested in the policy is

listed in the policylogger.log file.

Configuring business calendars
You can use the business calendar feature to identify the holidays and weekends
during a specific time period. This is optional.

About this task

Note: If you specified a time zone value in the SLA, Netcool/Impact uses this
value to compare the outage times with the holiday and weekend values that are
defined in the business calendar. For example, if you specify GMT as the time zone
in the SLA, Netcool/Impact compares the time in GMT to the holiday and
weekend times that are defined in the business calendar.

For more information about the properties that you can specify in a business
calendar definition, see “Business calendar properties file” on page 291.

If you want to use common holiday and weekend values for use with multiple
business calendars, you can create common business calendars. For more
information, see “Creating common properties in business calendars.”

For examples of different types of business calendars, see “Properties files
examples” on page 300.

Procedure
1. Create a file called <business_calendar>.props. Open the file.
2. Define a business calendar. The following example defines a business calendar

called US. This business calendar defines 2 holidays and 2 weekend days:
calendar.name = US
calendar.holidays.dateformat = MMM dd,yyyy
calendar.holidays.num = 2
calendar.holidays.1 = Jan 1,2016
calendar.holidays.2 = Jul 4,2016
calendar.weekends.num = 2
calendar.weekends.1 = 1
calendar.weekends.2 = 7

3. Save the file.
4. Run the createBusinessCalendarDefn policy. You need to use the Business

Calendar Definition Filename parameter to pass the name of the file in the
policy.
If you want to change the holiday or weekend days for a calendar, just update
the properties file and rerun the createBusinessCalendarDefn policy to create
the calendar. The new definition will replace the existing definition. If you want
to delete a calendar, refer to “SLO Utility Functions” on page 306.

Creating common properties in business calendars
If you need several business calendars that share weekend days or holidays, you
can define the common properties in a common calendar.

Chapter 16. Service Level Objectives (SLO) Reporting 289

About this task

After you define the common calendar, you specify the name of the common
calendar in the calendar.duplicateCalendarName property in the business calendar
definition. After you specify the common calendar, you need to define the unique
holiday and weekend days for the business calendar in a second business calendar.

Procedure
1. Define a calendar that is called COMMON.US. For example:

calendar.name=COMMON.US
calendar.holidays.dateformat= MMM dd,yyyy
calendar.holidays.num = 6
calendar.holidays.1 = Jan 1,2015
calendar.holidays.2 = Feb 14,2015
calendar.holidays.3 = Dec 25,2015
calendar.holidays.4 = Jan 1,2016
calendar.holidays.5 = Feb 14,2016
calendar.holidays.6 = Dec 25,2016
calendar.weekends.num = 2
calendar.weekends.1 = 1
calendar.weekends.2 = 7

2. Define a second business calendar to specify the unique holiday and weekend
values. In the example, this business calendar specifies the holidays that are
unique to the United States. For example, create a calendar that is called US that
contains the following properties:
calendar.name=US
calendar.holidays.dateformat= MMM dd,yyyy
calendar.holidays.num = 2
calendar.holidays.1 = Jul 4,2015
calendar.holidays.2 = Jul 4,2016

3. To add another region, you need to create a common file. For example, create a
calendar that is called COMMON.Canada. This calendar duplicates the properties
that are specified in the COMMON.US file:
calendar.name=COMMON.Canada
calendar.duplicateCalendarName=COMMON.US

4. To specify the values for the holidays and weekend days, create another
business calendar. For example, create a calendar that is called Canada that
specifies the unique holidays for Canada:
calendar.name=Canada
calendar.holidays.dateformat= MMM dd,yyyy
calendar.holidays.num = 2
calendar.holidays.1 = Jul 1,2015
calendar.holidays.2 = Jul 1,2016

5. To add any other region, repeat steps 3 and 4.

Results

When the business calendar is used by an SLO service definition, the function
checks the specified business calendar and the common version of the calendar.

For example, if the service definition includes the businessCalendar=US property,
the policy function checks both the common calendar, COMMON.US and the calendar
that specifies the unique values for the country, the US business calendar in the
example. The function uses the values in both to calculate the holidays and
weekend days.

290 Netcool/Impact: Solutions Guide

Business calendar properties file
Use the business calendar properties file to specify the business calendars that are
used in SLO reporting.

Table 95. Business calendar properties

Property Description

calendar.name Specify the name of the business calendar
that you want to define. If you do not
specify a value for this property, the
createBusinessCalendarDefn policy creates
an exception.

Some calendars are prefixed with COMMON..
For more information, see “Creating
common properties in business calendars”
on page 289.

calendar.duplicateCalendarName If you want to create a duplicate of an
existing calendar, specify the name of an
existing calendar.

If the specified duplicate does not exist,
the createBusinessCalendarDefn policy
creates an exception.

calendar.holidays.dateformat Specify the date format that is used to
specify the holiday dates for the calendar.

For example, you can specify the date
format as MMM dd,YYYY and specify New
Year's day as Jan 01,2015. This parameter
is required if you want to specify holidays
in the calendar.

You must use a valid format. These
formats are specified by the
SimpleDateFormat class in Java.

If this property is omitted, no holidays are
defined in the calendar.

calendar.holidays.num Specify the number of holiday dates that
are specified for the business calendar.

This parameter is required if you want to
specify holidays.

If this property is omitted, no holidays are
defined in the business calendar.

Chapter 16. Service Level Objectives (SLO) Reporting 291

Table 95. Business calendar properties (continued)

Property Description

calendar.holidays.n Specify the date of the nth holiday that is
specified for the business calendar. You
need to use the date format that is
specified in the
calendar.holidays.dateformat parameter.
For example, specify Jan 01,2015 for New
Year's day.

This parameter is required for each value
of n up to the number of properties that
are specified in the calendar.holidays.num
parameter.

If you do not specify a value for any of
these parameters, the policy does not
create holidays for the parameter.

calendar.weekends.num Specify the number of weekend days for
the business calendar. This parameter is
required if you want to specify weekends
in your business calendar.

If you omit this parameter, no weekend
days are defined in the business calendar.

calendar.weekends.n Specify the date of the nth weekend day
that is specified for the business calendar.

This parameter is required for each value
of n up to the number of properties that
are specified in the calendar.weekends.num
parameter.

If you do not specify a value for any of
these parameters, the policy does not
create weekend days for the parameter.

For examples of using properties file, see “Properties files examples” on page 300.

Retrieving SLA metric data
After you create the service definition file, you need to create policies to retrieve
the SLA metric data. The package includes sample policies and functions that you
can use to retrieve data from TBSM.

About this task

The SLO Reporting package includes sample policies that you can use to store
outage data from TBSM. For more information, see “SLO reporting policies” on
page 293.

You can also use a number of functions to help you to retrieve metric data. For
more information, see “SLO reporting policy functions” on page 293.

292 Netcool/Impact: Solutions Guide

Procedure
1. Define and implement the service definition and SLA definitions for the service:
v Create the service definition properties file, including the SLA definitions.
v To implement the business service definition, run the

createServiceDefinition policy, configuring the policy to pass the service
definition properties files as a parameter.

v If you require business calendars, run the createBusinessCalendarDefn
policy, configuring the business calendar properties files as a parameter.

2. Use a Netcool/Impact policy to record the metric information. Create a policy
that uses the recordSLAMetric policy function. The db2GetData sample policy
provides instructions and sample code that can help you create your policy.
The Netcool/Impact policies are written in JavaScript language. Use the Load
function to load the recordSLAMetric policy in to the data retrieval policy.
To use the SLO functions, add the following two commands to the start of your
policy
Load("slaDefGlobalSettings");
Load("recordSLAMetric");

3. Save the policy.

SLO reporting policies
The SLO reports package contains the following policies:
v BusinessCalendar: Provides functional support for business calendars.
v createBusinessCalendarDefn: Creates a business calendar that is based on a

properties file.
v createServiceDefinition: Creates a service definition that is based upon a

properties file.
v recordSLAMetric: Provides supporting functions that are used to record SLA

metrics
v serviceDefinition: Provides functional support for service definitions
v slaDefGlobalSettings: Provides support for global settings
v db2GetData: Sample Policy
v getDataFromTBSMAvailability: Sample Policy
v serviceDowntimeBasedOnTBSMStatusChange: Sample Policy

SLO reporting policy functions
Use the following policy functions to help you to record outage data in the
SLORPRT database.

The following policy functions are included as part of the SLO Reporting package:
v addCorrelationValue

v recordMetric

v addCheckpointValue

v getCheckpointValue

v addSLAMetricWithOperationalHoursAndBusinessCalendar

addCorrelationValue
The addCorrelationValue function records a correlation value for the SLA metric
that is being recorded. The correlated value is stored as a string. The format of the
string is defined by the user. The user is responsible for data maintenance.

Chapter 16. Service Level Objectives (SLO) Reporting 293

Table 96. addCorrelationValue parameters

Parameter Description

serviceName: Service Name for the correlation value that
is being stored.

CorrelationValue: The user's value, which is stored in the
database.

MetricName: Metric Name the correlation value that is
being stored.

TimeRecorded: Time record for this correlation value.

The following examples show where the addCorrelationValue function can be
used.
v Example 1:

The downtime of a service must be calculated based on the correlated value of
the status of an event. When the event is generated (open state), record the
Serial Number in the correlated value with the time recorded. When the event is
updated with the close state, retrieve the correlated “open time” from the
correlated table. Use the time recorded field as the “Creation time” and the
current time as the resolved time.

v Example 2:
If you want to store data to be used in the report later, the addCorrelationValue
function can be used. For example, the ticket number for which the service
downtime is being recorded can be stored in this table. Using the timeRecorded
field, service name, and the metric name, the user can generate a report of all
the tickets that are associated with a SLA metric.

recordMetric
The recordMetric function records a single SLA metric. The SLA metric name must
be defined during the services definition section.

Table 97. recordMetric function parameters

Parameter Description

serviceName: The service name for the SLA metric that is
being recorded.

metricName: The SLA Metric Name.

operValue: The value that needs to be stored for
operational hours.

nonOperValue: The value that needs to be stored for
non-operational hours.

holidayValue: The value that needs to be recorded for
holiday hours.

CreationTimeInSeconds: The time when this metric was created or is
recorded. The value must be in seconds
from Jan 1 1970.

operHourResourceId: Pass -1 for operHourResourceID parameters.

If you need to record the time for the SLA, always use the
recordSLAMetricWithOperationalHoursAndBusinessCalendar function.

294 Netcool/Impact: Solutions Guide

addCheckpointValue
The addCheckpointValue function adds a check point value for the solution. This
value can be used to store check points while the retrieval of the source data is
being processed.

Table 98. addCheckpointValue Parameters

Parameters Description

serviceName: Service Name for the check point that is to
be stored.

MetricName: Metric name for the check point value that is
to be stored

Value: The check point value that is to be recorded.

Example:

If the service downtime is based on the amount of time a ticket is opened, you can
use the addCheckpointValue function to track the last record that is read from the
source database. Store the last resolved time that was read from the database. The
next query can use the value that is stored in the checkpoint database for the filter.

getCheckpointValue
The getCheckpointValue function is used to retrieve the checkpoint value for a
service name and metric name. This function is used to get the value that was
added by the addCheckpointValue function.

Table 99. getCheckpointValue Parameters

Parameter Description

serviceName: The service name for the checkpoint value to
be retrieved from the table.

MetricName: The metric name for the checkpoint value to
be retrieved from the table.

addSLAMetricWithOperationalHoursAndBusinessCalendar
The addSLAMetricWithOperationalHoursAndBusinessCalendar function inserts
downtime based on operational hours and the business calendar, if a business
calendar is defined for the SLA associated with the service. If the business calendar
is specified, then business calendar is applied. Similarly, if the operational hours
time is specified the time is broken down by the operational and non-operational
hours.

Note: The start and end time values must be passed as a GMT value. This ensures
that it is calculated correctly based on the time zone property that is defined in the
service's SLA definition.

Table 100. addSLAMetricWithOperationalHoursAndBusinessCalendar Parameters

Parameters Description

ctime: The start time for the outage to be recorded.

Rtime: The end time for the outage to be recorded.

Chapter 16. Service Level Objectives (SLO) Reporting 295

Table 100. addSLAMetricWithOperationalHoursAndBusinessCalendar
Parameters (continued)

Parameters Description

serviceName: The service name, as defined in the service
definition properties file, for the metric
name to be recorded. If there is an identity
that is defined for that service, then the
identity can be passed to the function. For
more information about this property, see
the entry for the identity property in
“Service definition properties file” on page
284.

MetricName: The metric name, as defined in the service
definition properties file, for the SLA to be
recorded.

Note: The values that you specify in the ctime and Rtime parameters are converted
into the time zone that is defined in the SLA. If no time zone is specified, the
default value, GMT, is used. Therefore, you may need to adjust the values that you
use here, depending on the source of the data. For example, if you are using metric
history data from Tivoli Business Service Manager and you use the default time
zone in the SLA definition, you do not need to change anything because the source
data is also calculated in GMT in Tivoli Business Service Manager.

Using the getDataFromTBSMAvailability sample policy
The sample policy getDataFromTBSMAvailability obtains the status change from
the TBSM history database in TBSM to record the downtime for the service.

Procedure
1. In Netcool/Impact, create a data source, for example TBSM_History that

connects to the TBSM metric history database where the status changes are
stored. For more information about installing the TBSM metric history
database, see the TBSM documentation available from the following URL:
http://www-01.ibm.com/support/knowledgecenter/SSSPFK_6.1.1.3/
com.ibm.tivoli.itbsm.doc/timewa_server/twa_metrics_c_intro.html

2. In Netcool/Impact, create a data type called HISTORY_VIEW_METRIC_VALUE, and
associate this data type with the HISTORY_VIEW_RESOURCE_METRIC_VALUE view in
the TBSM metric history database.

3. In Netcool/Impact, create a policy activator service to activate the
getDataFromTBSMAvailability policy. For information about how to create a
policy activator service, see “Policy activator service” on page 73.
The SLA project that is imported when you deploy the SLO add-on function
includes a sample policy activator service called GetData. When this service is
started, it activates the db2GetData sample policy on a 300-second interval. Use
this example to help you to create your own policy activator service.

4. The getDataFromTBSMAvailability policy reads records that show changes in
the TBSM status for the services identified by your SLO service definitions. An
outage is calculated in one of two ways:
a. From the time a service is marked "Bad" in TBSM until the time the status

changes to anything other than “Bad”. This is the default behavior when
you deploy the SLO feature for the first time.

296 Netcool/Impact: Solutions Guide

http://www-01.ibm.com/support/knowledgecenter/SSSPFK_6.1.1.3/com.ibm.tivoli.itbsm.doc/timewa_server/twa_metrics_c_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSSPFK_6.1.1.3/com.ibm.tivoli.itbsm.doc/timewa_server/twa_metrics_c_intro.html

b. From the time a service is marked "Bad" in TBSM until the time the status
changes to “Good”. This is the behavior if you deployed the SLO feature
prior to installing Fixpack 4.

The getDataFromTBSMAvailability policy can retrieve the outage times for
active outages. Active outages are defined as those where the status is currently
"Bad" and not yet resolved. The end time is recorded as the current time when
the active outage is first recorded. Each subsequent run of the policy updates
the outage with the current time as the updated end time, until the final outage
time is recorded when the status either becomes “Good” or not “Bad”,
depending on how the policy is configured to run.

Configuring getDataFromTBSMAvailability
There are two different algorithms that can be used to decide when an outage
starts and ends using the TBSM metric history data. The default if the SLO
function is deployed after installing Fixpack 4 is that an outage is defined as only
the time when the TBSM status is “Bad”.

Prior to Fixpack 4, the algorithm calculated the outage from the time that the
status first changes to “Bad” until the status becomes “Good”, regardless of other
statuses that might be reported by TBSM in the interim. This algorithm can still be
used in case you already have SLO deployed and prefer this method.

Consider the following example:

The default algorithm with Fixpack 4 will record an outage time of T4 – T3, which
is only the time period when the status was “Bad”. The legacy algorithm will
record the outage as T5 – T3, ignoring time when the status changed back to
“Marginal”.

You can use the sloSetConfigurationValue policy to ensure that you are using the
alogithm you prefer. For more information on setting the SLO configuration
properties, refer to “SLO Utility Functions” on page 306.

Reports
The application availability report package contains a sample application
availability report.

Record the service downtime for the application. The availability report is
generated at the entity level for all the applications. The report requests the service
and the SLA that you want the report to run, and a date. The report template has
the following options:
v A line chart which reports the availability for up to a month for the date you

selected.
v A line report which reports the availability for up to a year up to the date you

selected.
v The table contains the data for each application.

Chapter 16. Service Level Objectives (SLO) Reporting 297

Example SLO reporting configuration
To help you to understand how SLO reporting can be integrated with Tivoli
Business Service Manager (TBSM), you can use this example configuration.

Before you begin

For a complete set of prerequisites, see “SLO reporting prerequisites” on page 281.

This sample configuration assumes the following:
v You have installed Tivoli Business Service Manager 6.1.1 Fix Pack 4.
v You have configured the Historic Reporting database on DB2 10.1 or higher in

TBSM.
v You have installed Jazz 1.1.2 with Tivoli Common Reporting 3.1 or higher on

DB2 10.1 or higher in TBSM.

About this task

After you complete this procedure, you can understand how to implement SLO
reporting for historic data that is stored in TBSM

.

Procedure
1. Create the SLORPRT reporting database. For example:

db2 create database SLORPRT using CODESET UTF-8 territory en-US

If the database is on the same server as Tivoli Common Reporting, then you do
not need to install a DB2 client. If the database is remote, you need to install a
DB2 client and catalog the node and database on the local machine.

2. Copy the slo_db2schema.sql file from <IMPACT_HOME>s/add-ons/slo/db to the
server where you want to create the SLORPRT database. Login with the DB2
user and run the following commands:
db2 connect to SLORPRT
db2 -tvf slo_dbschema.sql
db2 connect reset

3. Import the SLA and SLA_Utility projects.
Navigate to <TBSM_HOME>/bin and run the following command:
nci_import.[bat/sh] <servername> IMPACT_HOME/add-ons/slo/importData

For example:
./nci_import TBSM /opt/IBM/tivoli/impact/add-ons/slo/importData

Then run the following command:
nci_import.[bat/sh] <servername> IMPACT_HOME/add-ons/slo/sloutility

For example:
./nci_import TBSM /opt/IBM/tivoli/impact/add-ons/slo/sloutility

4. Import the report package to the Tivoli Common Reporting server.
a. Copy the ImpactSLOReportPackage.zip file from the <IMPACT_HOME>/add-

ons/slo/Reporting directory in Netcool/Impact to the server where Tivoli
Common Reporting is installed.

b. Log in to the Tivoli Common Reporting server with the user who installed
Tivoli Common Reporting.

298 Netcool/Impact: Solutions Guide

c. Navigate to the /bin directory. For example /opt/IBM/JazzSM/reporting/
bin.

d. To create a data source for the SLORPRT database, enter the trcmd
command:
trcmd.sh -user <TCR user> -password <TCR password>
-datasource -add SLORPRT -connectionString <db2 connection string>
-dbType DB2 -dbName <database name>
-dbLogin <database username> -dbPassword <database password>

For example:
./trcmd.sh -user smadmin -password password -datasource -add SLORPRT
-connectionString jdbc:db2://TCRserver.example.com:50000/SLORPRT
-dbType DB2 -dbName SLORPRT -dbLogin db2inst1 -dbPassword password

e. To import the SLO reporting package, enter the trcmd command:
./trcmd.sh -import -bulk <file> -user <TCR User>
-password <TCR password>

For example:
./trcmd.sh -import -bulk /tmp/ImpactSLOReportPackage.zip -user smadmin
-password password

5. Create the SLO Reporting data source.
a. To log in to the Tivoli Integrated Portal GUI, use the appropriate url.
b. To open the Data Model page, click System Configuration > Event

Automation > Data Model

c. From the drop-down list, click Project SLA.
d. Edit the SLOReportDatasource. Change the user name, password, host

name, port, and database values to match the SLORPRT database.
e. To confirm that the values are correct, click Test Connection.
f. Save your changes.
g. From the drop-down list, click Project SLA_Utility.
h. Edit the SLOUtilityDatasource. Change the user name, password, host

name, port, and database values to match the SLORPRT database.
i. To confirm that the values are correct, click Test Connection.
j. Save your changes.

6. Create the service definitions.
Services are specified by users in a properties file on the Data Server in TBSM.
You use the createServiceDefintion policy in Netcool/Impact to import these
into Netcool/Impact.
a. Log in to the TBSM server with the user who installed TBSM.
b. Select the service that you want to create a definition for.
c. Create a copy of the service definition properties file in a temporary folder,

calling the file ServiceDefinition.props.
d. Add the properties. For more information, see “Service definition properties

file” on page 284.
e. Save your changes.
f. Log in to the Tivoli Integrated Portal GUI.
g. To open the Policies page, click System Configuration > Event Automation

> Policies

h. Click the createServiceDefinition policy and click the Run with
parameters button.

Chapter 16. Service Level Objectives (SLO) Reporting 299

i. Enter the path to the directory where ServiceDefinition.props is stored.
j. To run the policy, click Execute.
k. To verify that the policy has run correctly, click View Policy Log.

7. Retrieve outage data from TBSM to store in the SLORPRT database
a. Log in to the Tivoli Integrated Portal GUI.
b. To open the Data Model page, click System Configuration > Event

Automation > Data Model.
c. Create a DB2 data source called TBSM_HISTORY. Specify the values for the

TBSM Metric History Database.
d. Test the connection and save the data source.
e. Create a data type called HISTORY_VIEW_METRIC_VALUE for the TBSM metric

history data source.
f. Select TBSMHISTORY and HISTORY_VIEW_RESOURCE_METRIC_VALUE.
g. Click Refresh.
h. Select HISTORYRESOURCEID as the key field.
i. Save the data type.
j. To open the Policies page, click System Configuration > Event Automation

> Policies.
k. Select the getDataFromTBSMAvailability policy and click Run. To update

the data at regular intervals, you can use the GetData service. Edit the
service so that the getDataFromTBSMAvailability policy runs at regular
intervals, which you can specify in seconds. By default, the policy will
record outages only when the TBSM status is “Bad”.

8. Running the Application Availability report in Tivoli Common Reporting
a. Log in to the IBM Dashboard Application Services Hub GUI.
b. To open the Common Reporting page, click Reporting > Common

Reporting.
c. Click Impact SLO Report > SLO application availability report.
d. Select the appropriate resource in the Parameter Selection field.
e. Select the metric name.
f. Specify an end date that occurs after the latest import of historic data for the

service and click Finish.

Properties files examples
Use these examples to help you to define the service definition properties file and
business calendar properties files.

Operational hours service level example
Use this example to help you to understand how to specify the same operational
hours for all the SLAs in a service definition.

This example defines the operational hours at the service level. These hours apply
to all the SLAs in the example because there are no operational hours defined for
the SLAs.
This sample service definition file defines the operational
hours as properties of the service. Multiple slas are defined
without operational hours. Each sla in this file will use the
operational hours defined for the service.
These hours apply ONLY to slas defined in this same file.
serviceName=SLOService

300 Netcool/Impact: Solutions Guide

description=Service for testing SLO
identity=SLOService

The next set of properties define the operational hours for the
service. These are applied to all the slas defined later in the
file, assuming the slas do not include specific operational hour
definitions.
operationalHour.num=2
operationalHourStartTime.1 = 8:00:00
operationalHourEndTime.1 = 12:00:00
operationalHourStartTime.2 = 13:00:00
operationalHourEndTime.2 = 17:00:00

Now define the slas, but do not define any operational hour periods,
sla.num=2
sla.1.name=serviceDowntimeEST
sla.1.displayName=Service Down Time
sla.1.description=Service Down Time
sla.1.timezone=EST
sla.1.operationalHourThreshold = 99.5
sla.1.nonOperationalHourThreshold = 98.5
sla.2.name=serviceDowntimePST
sla.2.displayName=Service Down Time
sla.2.description=Service Down Time
sla.2.timezone=PST
sla.2.operationalHourThreshold = 99.0
sla.2.nonOperationalHourThreshold = 98.0

Single SLA example
Use this example service definition to help you to understand how to define
operational hours for a single SLA in a service definition properties file.

This example service definition specifies a single set of operational hours for the
SLA:
This sample service definition file contains a single sla
definition with a single operational hour period. A business
calendar is also defined.
serviceName=SLOService
description=Service for testing SLO
label=SLO Test Service
identity=SLOService
businessCalendar=US

sla.name=serviceDowntime
sla.displayName=Service Down Time
sla.description=Service Down Time

Define a single operational hour period, 8AM to 5PM.
Time zone defaults to GMT.
sla.operationalHourStartTime = 8:00:00
sla.operationalHourEndTime = 17:00:00

sla.operationalHourThreshold = 99.5
sla.nonOperationalHourThreshold = 98.5

Time zone example
Use the following example to help you to understand how to define operational
hours in different time zones.

This example defines two sets of operational hours and time zones, one is for each
coast of the United States:

Chapter 16. Service Level Objectives (SLO) Reporting 301

This sample service definition file contains multiple sla definitions
to support operational hours across multiple time zones.
Multiple operational hour periods are defined. A business calendar is
also defined that will apply to both slas.
serviceName=SLOService
description=Service for testing SLO
label=SLO Test Service
identity=SLOService

The following business calendar specification will apply to all
slas defined in this properties file. If there is another sla or slas
for the same service that require a different calendar, then you can
copy this file, change the businessCalendar value, and replace the sla
definitions below. Note that the description, label, and identity
will be replaced for the service if any of those property values are
changed in the copied file.
businessCalendar=US

Creating two slas to measure availability across multiple time zones.
sla.num=2

The first sla reflects the operational hours on the East Coast of the US.
Normal hours are 8AM to 5PM, with an hour down for lunch at noon.
sla.1.name=serviceDowntimeEST
sla.1.displayName=Service Down Time
sla.1.description=Service Down Time
sla.1.timezone=EST
sla.1.operationalHour.num=2
sla.1.operationalHourStartTime.1 = 8:00:00
sla.1.operationalHourEndTime.1 = 12:00:00
sla.1.operationalHourStartTime.2 = 13:00:00
sla.1.operationalHourEndTime.2 = 17:00:00
sla.1.operationalHourThreshold = 99.5
sla.1.nonOperationalHourThreshold = 98.5

The second sla reflects the operational hours on the West Coast of the US.
Starting time is an hour later, but no down time for lunch.
The thresholds displayed on the availability report are slightly lower.
sla.2.name=serviceDowntimePST
sla.2.displayName=Service Down Time
sla.2.description=Service Down Time
sla.2.timezone=PST
sla.2.operationalHourStartTime = 9:00:00
sla.2.operationalHourEndTime = 17:00:00
sla.2.operationalHourThreshold = 99.0
sla.2.nonOperationalHourThreshold = 98.0

Simple service definition example
Use the following example to help you to understand how you can configure a
simple service definition properties file.

This example consists of the minimal required parameters:
This sample service definition file consists of only the required properties
serviceName=SLOService

label defaults to the empty string and description defaults to the
serviceName value businessCalendar is optional, with no default value

identity is a required property, but can be the same as the serviceName
value when using a TBSM service
identity=SLOService

Though technically not required, a service definition with no
SLA metric name defined will not result in any outage data being
created in SLORPRT database

302 Netcool/Impact: Solutions Guide

sla.name=serviceDowntime

sla.displayName and sla.description both default to the empty string
sla.timezone defaults to GMT
sla.operationalHourThreshold and sla.nonOperationalHourThreshold
values default to 0. Since no operational hours are defined for
the SLA or the service, the single default operational hour
period "00:00:00" to "23:59:59" is used.

Multiple identities in a service definition example
Use this example to help you to understand how to define multiple identities in a
single service definition file.

This example shows how you can use multiple identities in a single service
definition properties file:
This sample service definition file illustrates how to specify
multiple identities for a service. This can be used when there are
multiple sources of outage data for a service, but these sources use a
different identity for the service.
serviceName=SLOService
description=Service for testing SLO

There will be outage data gathered from 3 different sources,
including the TBSM Metric History database. An identity is of the form
"identityType:::identityString". The default identity is
"tbsmIdentity:::serviceName".
The SLO metric functions can be passed any of these identities as the
"resource name" and the outage data will be calculated for service "SLOService".
identity.num=3
identity.1=SLOService # This is the same as tbsmIdentity:::SLOService
identity.2=MSN:::ManagedSystemName/ABCCompany/SLOService
identity.3=GUID:::SLOService:guid:1ab2cd3ef4gh

The rest of this file contains the single sla being defined by this
file for SLOService.
sla.name=serviceDowntime
sla.displayName=Service Down Time
sla.description=Service Down Time
sla.operationalHourStartTime = 8:00:00
sla.operationalHourEndTime = 17:00:00
sla.operationalHourThreshold = 99.5
sla.nonOperationalHourThreshold = 98.5

Common US calendar properties
Use this example to help you to understand how to create a common business
calendar properties file.

This business calendar specifies the common holidays and weekend days for the
United States:
This sample calendar definition file defines the "common"
holidays and weekend days. Other calendars should specify this
calendar for the property calendar.duplicateCalendarName to
share these definitions.

The name must start with the prefix "COMMON.". The SLO function
uses the calendar definitions in calendars "US" and "COMMON.US"
if the service definition specifies businessCalendar=US as a property.
calendar.name=COMMON.US

The date format must meet the requirements defined by the
Java SimpleDateFormat class.
calendar.holidays.dateformat= MMM dd,yyyy

Chapter 16. Service Level Objectives (SLO) Reporting 303

Defining 6 holidays. Any numbered property that is missing is skipped.
Any numbered property above 6 (in this example) will be ignored.
calendar.holidays.num = 6
calendar.holidays.1 = Jan 1,2015
calendar.holidays.2 = Feb 14,2015
calendar.holidays.3 = Dec 25,2015
calendar.holidays.4 = Jan 1,2016
calendar.holidays.5 = Feb 14,2016
calendar.holidays.6 = Dec 25,2016

Defining 2 weekend days. Any numbered property that is missing will be skipped.
Any numbered property above 2 (in this example) will be ignored.
calendar.weekends.num = 2

The "day number" is defined by the Java Calendar class. In the calendar for the
US locale the constant SUNDAY is defined as 1 and the constant 7 is SATURDAY.
MONDAY is 2, TUESDAY is 3, etc.
calendar.weekends.1 = 1
calendar.weekends.2 = 7

US Calendar example
Use this example to help you to understand how to create a business calendar
properties file that defines unique holidays and weekends.

This example defines holidays and weekend days that are unique to the calendar.
However, the holidays and weekends are supplemented by the properties in the
COMMON.US calendar.
This sample calendar definition file defines the holidays and weekend days unique
to this specific calendar. This calendar will be supplemented by entries in the
"COMMON" calendar of the same name.

The name of this calendar. The entries in this calendar and the entries in
calendar COMMON.US will all be used when evaluating outage time.
calendar.name=US

The date format, as defined by Java class SimpleDateFormat, is required
in order to specify holiday dates.
calendar.holidays.dateformat= MMM dd,yyyy

The US calendar will have 2 holidays that are unique to the calendar.
All other holidays and the weekend days are defined in the
calendar COMMON.US.
calendar.holidays.num = 2
calendar.holidays.1 = Jul 4,2015
calendar.holidays.2 = Jul 4,2016

Common calendar properties file example
Use the example properties file to help you to create your own business calendar
properties files.

This example duplicates the common holidays and weekend days from the
COMMON.US calendar:
This sample calendar definition file duplicates another calendar which
defines "common" holidays and weekend days.

The name must start with the prefix "COMMON.". The SLO function will use
the calendar definitions in calendars "Canada" and "COMMON.Canada" if the
service definition specifies businessCalendar=Canada as a property.
calendar.name=COMMON.Canada

The following property instructs the calendar definition policy to just

304 Netcool/Impact: Solutions Guide

copy all the entries in calendar COMMON.US to this calendar.
calendar.duplicateCalendarName=COMMON.US

Any other properties are ignored when calendar.duplicateCalendarName is specified.

Canada calendar example
Use this example business calendar properties file to define the holidays that are
unique to Canada.

This business calendar specifies the unique holidays in Canada. The holidays and
weekend days that are specified in the COMMON.Canada business calendar are also
used when calculating the outage time for services using the calendar called
Canada.
This sample calendar definition file defines the holidays and weekend days unique
to this specific calendar. This calendar is supplemented by entries in the
"COMMON" calendar of the same name.

The name of this calendar. The entries in this calendar and the entries in
calendar COMMON.Canada are used when evaluating outage time.
calendar.name=Canada

The date format, as defined by Java class SimpleDateFormat, is
required to specify holiday dates.
calendar.holidays.dateformat= MMM dd,yyyy

The Canada calendar will have 2 holidays that are unique to the calendar.
All other holidays and the weekend days are defined in the
calendar COMMON.Canada.
calendar.holidays.num = 2
calendar.holidays.1 = Jul 1,2015
calendar.holidays.2 = Jul 1,2016

SLA Utility properties
Use this example to help you to understand how to create a SLA Utility properties
file.
serviceName=Service1
description=Service to test SLO
identity=tbsmIdentity:::Service1
sla.1.name=example_1
sla.1.displayName=serviceExample1
sla.1.description=Service Example 1
sla.1.timezone=GMT
sla.1.operationalHour.num=2
sla.1.operationalHourStartTime.1=06:00:00
sla.1.operationalHourEndTime.1=10:00:00
sla.1.operationalHourStartTime.2=14:00:00
sla.1.operationalHourEndTime.2=18:00:00
sla.2.name=example_2
sla.2.displayName=serviceExample2
sla.2.description=Service Example 2
sla.2.timezone=GMT
sla.2.operationalHour.num=2
sla.2.operationalHourStartTime.1=07:00:00
sla.2.operationalHourEndTime.1=11:00:00
sla.2.operationalHourStartTime.2=15:00:00
sla.2.operationalHourEndTime.2=19:00:00

Chapter 16. Service Level Objectives (SLO) Reporting 305

SLO Utility Functions
There are utility policies available in project SLA_Utility that provide additional
functionality for configuring the SLO feature, as well as functions for maintaining
the outage data that is accumulated for reporting purposes.

These utilities complement the initial implementation found in the SLA project. If
you deployed the SLO feature prior to Fixpack 4, you were instructed to import
the SLA_Utility project when installing Fixpack 4.

If you have not imported the SLA_Utility project, you must complete the import
in order to use these utility functions. You must update the SLOUtilityDatasource
datasource after importing to connect to the SLORPRT database being used by
existing datasource SLOReportDatasource.

The utility functions will generally throw exceptions for errors like missing
parameters or names that do not exist. You should check the Impact
policylogger.log file to make sure you got the expected results from the utility.

Note: When using utility functions that alter the SLO configuration or the outage
data collected by the SLO feature, consider making a backup of the database before
proceeding. As with any database, the SLORPRT database should be backed up on
a regular interval as well as having regular DB2 maintenance applied for optimal
performance.

Maintaining the reporting data in the SLORPRT database
Project SLA_Utility includes the policy sloManageOutageTables that can be
activated to prune outage records from the SLO_METRIC_VALUE table in the SLORPRT
database. This can help control the amount of data retained for reporting purposes
by removing the older records. Using the default configuration, outage records
more than 365 days old will be removed and archived.

In addition to the policy, an Impact activator service called ManageSLOTables is
included that will activate the policy. It is set to activate once a day by default.
This service is not started by default.

When the outage records are pruned, they are written to an archive table. By
default the records will remain in the archive for 30 days, allowing for the
possibility to restore outages if too much data has been removed. The policy
sloManageOutageTables will also handle pruning records from the archive each
time it runs.

See “Setting SLO configuration values” on page 310 for information on changing
the default retention periods for both the outage table and the archived outage
table.

See “Restoring outage data” on page 309 for information on restoring outage data
from the archived outage table.

Removing service, SLA, and calendar definitions
Policies are included in the SLA_Utility project that will allow you to remove
service, SLA, and calendar definitions that are no longer needed. The policies that
remove the service and SLA definitions will archive any outage data that has
already been recorded for the service and/or SLA.

306 Netcool/Impact: Solutions Guide

Use the following policies to remove service definitions, SLA definitions, or the
mapping of a service to an SLA definition:

sloDeleteServiceDefinition
This policy will delete a service definition and archive all outage records
associated with the service. Removing the service also removes all
mappings to any SLA that was used with the service. The SLA definitions
may still be used by other services and are not affected.

You can add the service back later and restore the outages if they have not
been pruned from the archive.

The “Service Name” parameter is required.

sloDeleteSLADefinition
This policy will delete an SLA definition and archive all outage records
associated with the SLA. Removing the SLA also removes all mappings to
any service that was using the SLA. The service definitions may still be
used by other SLAs and are not affected.

You can add the SLA back later and restore the outages if they have not
been pruned from the archive.

The “SLA Metric Name” parameter is required.

sloDeleteSLAForService
This policy will delete the mapping between an SLA and a service. All
outage records for this SLA and service combination are archived. Only the
mapping is removed – the service and/or SLA may be used in other
mappings, so the definitions are not affected.

You can add the SLA to resource mapping back later and restore the
outages if they have not been pruned from the archive.

The “SLA Metric Name” and “Service Name” parameters are required.

Use the following policy to remove calendar definitions.

sloDeleteCalendarDefinition
This policy will delete a calendar definition from the SLO configuration. If
you have created a “COMMON” calendar for this calendar, then it will not
be deleted. You must explicilty delete the” COMMON” calendar if it is also
no longer required.

For example, when you have a calendar called US, the SLO feature will
use information from this calendar and from the calendar called
COMMON.US, if that calendar also exists. You would need to run the
delete policy once for each calendar if you no longer need either.

Exporting service and calendar definitions
Policies are included in the SLA_Utility project that will allow you to export
service and calendar definitions. This may be useful if you no longer have the
properties files you used to create the services and calendars, or if you need to set
up the same SLO configuration on another system.

Before you can export any SLO elements, you must define the configuration
property SLO_EXPORT_DIRECTORY , which defines the target directory to be used for
export operations. See “Setting SLO configuration values” on page 310 for more
information.

Chapter 16. Service Level Objectives (SLO) Reporting 307

Use the following policies to export service definitions. When a service is exported,
a properties file is created for each SLA Metric name that is mapped to the service.
The exported files will be placed in the directory defined by SLO configuration
value SLO_EXPORT_DIRECTORY and named SLO_Export_<service name>_<SLA metric
name>.props.

sloExportServiceDefinition
This policy will export one or more properties files that represent the
definition of the service and each SLA mapped to the service.

The “Service Name” parameter is required

The “SLA Metric Name” parameter is required and must be either:
v The name of a specific SLA metric mapped to the service. This name

must exist and be mapped to the service specified by “Service Name”.
v Or the single character *, which indicates that all SLAs mapped to the

service should be exported.

sloExportAllServiceDefinitions
This policy will look up all service definitions defined in the SLO
configuration and export each one. This will produce a properties file for
every combination of a service and SLA defined in the SLO configuration.

There are no parameters for this policy.

Use the following policies to export calendar definitions.

When a calendar is exported, a properties file is created in the directory defined by
SLO configuration value SLO_EXPORT_DIRECTORY. The file is named
SLO_Export_<calendar name>.props.

sloExportCalendarDefinition
This policy will export a calendar definition properties file. If you have
created a “COMMON” calendar for this calendar, then that calendar will
also be exported.

For example, when you have a calendar called US, the SLO feature will
use information from this calendar and from the calendar called
COMMON.US, if that calendar also exists. When you run the export, two
properties files are created, one for US and one for COMMON.US.

The “Calendar Name” parameter is required.

sloExportAllCalendarDefinitions
This policy will look up all calendar definitions defined in the SLO
configuration and export each one. This will produce a properties file for
each unique calendar definition, including any “COMMON” calendars.

There are no parameters for this policy.

Removing specific outage data
The SLA_Utility project includes functions that can be used to remove specific
outages from the table used for the SLO Reporting. These functions should be used
only to make finer adjustments to the outage data that was generated by the SLO
function.

Note: You should always consider backing up the SLORPRT database before using
functions to remove outage data.

308 Netcool/Impact: Solutions Guide

The functions included can remove outages for a service, for an SLA metric, or for
a specific SLA metric and service mapping. In addition, you can remove outages
based on time criteria, for example outages before a certain time, after a certain
time, or in a specific interval defined by a beginning and ending timestamp. Some
functions combine the capabilities to support removing outages for services or
SLAs while also defining a time range. When a time range is defined, it is applied
to the VALUETIME column of the SLO_METRIC_VALUE table, which is the
timestamp that defines when the outage occurred.

For all functions that remove outages, the outages are archived into another table
and stored with the name of the service and SLA metric. If you later attempt to
restore the outages from the archive, the service name and SLA metric name must
exist in the configuration or the records will not be restored. Archived records
include an “archive time”, which is set to the current time. This timestamp is used
by the policy sloManageOutageTables if you have activated this policy to
automatically prune the outage and archive tables.

Policy sloRemoveOutages

Policy sloRemoveOutages is provided as a sample policy for calling the various
remove functions. The policy has extensive comments that describe how to call
each function. In its shipped state the policy does not perform any actions, as all
sample function calls are commented out.

You should create your own policy and use the code in sloRemoveOutages as a
model for building the function calls you need.

Restoring outage data
The SLA_Utility project includes functions that can be used to restore specific
outages from the archive table.

These outages were put in the archive when one of the following actions occurred:
v Regular maintenance was performed on the outage table by activating policy

sloManageOutageTables

v A service, SLA, or mapping between a service and SLA was deleted
v One or more of the remove functions described in the previous section was used

to remove specific outages from the SLO Reporting data

It is important to remember that archived outages are only retained for 30 days by
default. This assumes you are activating policy sloManageOutageTables to perform
regular pruning of the outage and archive tables.

Note: You should always consider backing up the SLORPRT database before using
functions to restore archived data.

The restore functions mirror the remove functions described in the previous
section, with the same capabilities for defining the restore criteria that are available
when defining the remove criteria. The restore functions can recover outages for a
service, for an SLA metric, or for a specific SLA metric and service mapping. In
addition, you can restore outages based on time criteria or a combination of the
time and name parameters.

For all functions that restore outages , the outages are restored into the
SLO_METRIC_VALUE table and removed from the archive table. It is important to
note the following when restoring outages:

Chapter 16. Service Level Objectives (SLO) Reporting 309

v Each archived record has the name of the service and the name of the SLA
metric. The service and SLA must exist in the configuration, and must have a
mapping defined, or the records cannot be restored. For example, if a service
was deleted, causing outages to be archived, then that service and the
appropriate SLA mappings for the service must be created in the SLO
configuration before the archived records can be restored.

v When archive records are restored, be aware that the next run of
sloManageOutageTables, if activated, may archive the outage again, depending
on the VALUETIME of the outage and your configuration value for how long to
retain outage records (365 days by default). However, the archive time will be
set to the current time, giving you more time to update the configuration and
retry the restore before the outages are permanently deleted from the archive.

v Some restore functions may perform more slowly if there are a lot of archived
records to examine. As noted above, the service name, SLA metric name, and
mapping must be validated before an archived outage can be restored. Thus if
only the time criteria is specified, then the archived records may include a
variety of service and SLA combinations, each of which must be validated as
part of the restore operation.

Always check the Impact policylogger.log file to ensure the expected outages
were restored. If service, SLA, or mapping configuration is missing, correct the
configuration and re-run the restore operation.

Policy sloRestoreOutages

Policy sloRestoreOutages is provided as a sample policy for calling the various
restore functions. The policy has extensive comments that describe how to call each
function. In its shipped state the policy does not perform any actions, as all sample
function calls are commented out.

You should create your own policy and use the code in sloRestoreOutages as a
model for building the function calls you need.

Setting SLO configuration values
This section describes each of the SLO configuration values and shows how to
query and set the values.

OUTAGE_RETENTION_DAYS
Set this configuration value to the number of days that outages should be
kept in table SLO_METRIC_VALUE before being archived. The default
value is 365 days. This configuration value is used by policy
sloManageOutageTables to prune the outage table, if the policy has been
activated.

A higher value for this setting means that more outage data will be
retained and a longer historical pattern can be shown in the reports.
Reduce this value to prune the data more quickly and retain less historical
data.

OUTAGE_ARCHIVE_RETENTION_DAYS
Set this configuration value to the number of days that archived outages
should be kept in table SLO_METRIC_VALUE_ARCHIVE before being
permanently deleted. The default value is 30 days. This configuration value
is used by policy sloManageOutageTables to prune the archive table, if the
policy has been activated.

310 Netcool/Impact: Solutions Guide

A higher value for this setting means that more archive data will be
retained, providing a longer opportunity to restore the data if needed.
Reduce this value to prune the data more quickly, reducing the window of
time when the data can be restored.

SLO_EXPORT_DIRECTORY
Set this configuration value to the directory to be used for exporting SLO
services and calendars. This value must be set before running any export
function. There is no default value.

TBSM_OUTAGE_STATUS
Set this configuration value to control how the sample policy
getDataFromTBSMAvailability determines an outage from data in the
TBSM metric history database.

The default, recommended value is “BAD”, which indicates that outages
are defined as ONLY when the TBSM status is “Bad”. This is the default
value if you deploy SLO for the first time after installing Fixpack 4.

If you already have SLO deployed when you install Fixpack 4, then an
outage is defined to end ONLY when the TBSM status becomes “Good”.
This was the previous behavior and will not be changed by just installing
Fixpack 4.

Use sloSetConfigurationValue to set this property to “BAD” to configure
the recommended behavior. Set the value to anything else (for example, “”)
to use the legacy behavior, which requires the TBSM status to be “Good”
to end an outage.

Policy sloSetConfigurationValue

The SLA_Utility project includes policy sloSetConfigurationValue for querying
and setting the configuration values described above.

The parameter Configuration Property is required and must take one of the
following values:
v OUTAGE_RETENTION_DAYS

v OUTAGE_ARCHIVE_RETENTION_DAYS

v SLO_EXPORT_DIRECTORY

v TBSM_OUTAGE_STATUS

The parameter Configuration Value specifies the value to be set for the property. If
you specify “?” for this parameter, then the policy will just log the current value to
the Impact policylogger.log file.

Chapter 16. Service Level Objectives (SLO) Reporting 311

312 Netcool/Impact: Solutions Guide

Chapter 17. Configuring Maintenance Window Management

Maintenance Window Management (MWM) is an add-on for managing
Netcool/OMNIbus maintenance windows.

MWM can be used with Netcool/OMNIbusversions 7.x and later. A maintenance
time window is a prescheduled period of downtime for a particular asset. Faults
and alarms, also known as events, are often generated by assets undergoing
maintenance, but these events can be ignored by operations. MWM creates
maintenance time windows and ties them to Netcool/OMNIbus events that are
based on OMNIbus fields values such as Node or Location. Netcool/Impact
watches the Netcool/OMNIbus event stream and puts these events into
maintenance according to the maintenance time windows. The Netcool/Impact
MWMActivator service located in the System Configuration > Event Automation
> Services in the MWM project must be running to use this feature. For more
information about maintenance windows, see “About MWM maintenance
windows” on page 315.

Activating MWM in a Netcool/Impact cluster
Maintenance Window Management (MWM) interacts with Netcool/OMNIbus
using an Netcool/Impact policy activator service called MWMActivator. This
service is turned off by default in Netcool/Impact.

About this task

Use the following steps to activate MWM in the Netcool/Impact cluster
NCICLUSTER.

Procedure
1. Log on to Netcool/Impact.
2. Expand System Configuration > Event Automation. Click Policies.
3. From the Cluster list, select NCICLUSTER. From the Project list, select MWM.
4. In the Policies tab, select the MWM_Properties policy, right click, and select

Edit or click the Edit policy icon to view the policy and make any required
changes. For more information, see “Configure the MWM_Properties policy.”

5. Click Services.
6. In the Services tab, select MWMActivator, right click, and select Edit or click

the Edit services icon to open the MWMActivator service properties. Make any
required changes. For information about these properties, see “Configuring
MWMActivator service properties” on page 314.

7. To start the service, in the service status pane, select MWMActivator and either
right click and select Start or click the Start Service arrow in the Services
toolbar.
When the service is running it puts OMNIbus events into maintenance based
on schedules entered into the MWM GUI.

Configure the MWM_Properties policy
Configure the MWM_Properties policy for use with the MWM add-on.

© Copyright IBM Corp. 2006, 2016 313

The following configurable options are available in the Maintenance Window
Management MWM_Properties policy.
v Maintenance window expiration

– By default, MWM clears the “in maintenance” flag from corresponding
OMNIbus events when a window expires. You can edit the policy so that
MWM leaves those events flagged as “in maintenance” after the maintenance
window expires.

v Flagging existing events when a maintenance window starts
– By default, any matching events in OMNIbus are flagged, regardless of when

they came into OMNIbus. You can modify the policy so that MWM flags only
events arrive or deduplicate while the maintenance window is running.

You can change these options by editing the MWM_Properties policy in the MWM
project.
1. Expand System Configuration > Event Automation, click Services.
2. In the Projects list, select MWM.
3. In the Policies tab, select MWM_Properties, right click and select Edit to open

the policy. MWM_Properties is a small policy with a single function called
getProperties(). Other MWM policies call this function to retrieve
configuration information.

4. To change the MWM options, change the function and the given values to TRUE
or FALSE if required.

See the following information in the policy for clearFlag options. clearFlag =
TRUE is the default option.
Use clearFlag = TRUE if you want the maintenance flag
on events cleared when windows expire.
Use clearFlag = FALSE if you want Impact to leave the events tagged
as in maintenance after the window expires.

See the following information in the policy for flagExistingEvents options.
flagExistingEvents = TRUE is the default option.
Use flagExistingEvents = TRUE if you want Impact to flag as "in maintenance"
events which last came in (based on LastOccurrence) before the time window started.
Use flagExistingEvents = FALSE if you want Impact to NOT flag events as
"in maintenance" unless they come in during the maintenance window.

function getProperties(propsContext)
{
propsContext = newobject();

//SET YOUR VALUES HERE////////////////////////
clearFlag = TRUE;
flagExistingEvents = TRUE;
//THANKS :)

propsContext.clearFlag = clearFlag;
propsContext.flagExistingEvents = flagExistingEvents;

}

Configuring MWMActivator service properties
Configure the MWMActivator service to check for OMNIbus events that require
maintenance.

314 Netcool/Impact: Solutions Guide

Procedure
1. Expand System Configuration > Event Automation, click Services.
2. In the Services tab, right click MWMActivator and select Edit or click the Edit

services icon to open the properties for the MWMActivator service.
3. By default, the MWMActivator Activation Interval is set to 7 seconds. The

MWMActivator service checks OMNIbus every seven seconds for events that
require maintenance. Select the interval time you want to use. If possible use
prime numbers.

4. Change the Policy value only if you have created your own policy to replace
the MWM_Properties policy.

5. Select Startup to start the MWMActivator service when Netcool/Impact starts.
6. Select the Service Log to create a file of the service log.

Logging on to Maintenance Window Management
Use theTivoli Integrated Portal to access Maintenance Window Management
(MWM).

Procedure
1. In the Tivoli Integrated Portal, expand Troubleshooting and Support > Event

Automation.
2. Click Maintenance Window Management to open MWM. The main menu

options are Add One Time, Add Recurring, and View Windows. There is also
a Time Zone menu for setting your time zone. For more information about
using these options, see “About MWM maintenance windows.”

About MWM maintenance windows
Use the Maintenance Window Management (MWM) web interface to create
maintenance time windows and associate them with Netcool/OMNIbus events.

Netcool/OMNIbus events are based on OMNIbus field values such as Node or
Location. The Netcool/OMNIbus events are then put into maintenance according
to these maintenance time windows. If events occur during a maintenance
window, MWM flags them as being in maintenance by changing the value of the
OMNIbus field, integer field, SuppressEscl to 6 in the alerts.status table.

A maintenance time window is prescheduled downtime for a particular asset.
Faults and alarms (events) are often generated by assets that are undergoing
maintenance, but these events can be ignored by operations. MWM tags OMNIbus
events in maintenance so that operations know not to focus on them. You can use
MWM to enter one time and recurring maintenance time windows.
v One time windows are maintenance time windows that run once and do not

recur. One Time Windows can be used for emergency maintenance situations
that fall outside regularly scheduled maintenance periods. You can use them all
the time if you do not have a regular maintenance schedule.

v Recurring time windows are maintenance time windows that occur at regular
intervals. MWM supports three types of recurring time windows:
– Recurring Day of Week

– Recurring Date of Month

– Every nth Weekday

Maintenance time windows must be linked to OMNIbus events in order for MWM
to mark events as being in maintenance. When you configure a time window, you

Chapter 17. Configuring Maintenance Window Management 315

also define which events are to be associated with the time window. The MWM
supports the use of Node, AlertGroup, AlertKey, and Location fields for linking
events to time windows.

Creating a one time maintenance window
Create a one time maintenance time window for a particular asset.

Procedure
1. Click the Add One Time link to view the form to create a one time

maintenance window.
2. Enter the appropriate values in the fields Node, AlertGroup, AlertKey, and

Location.
Select the Equals or Like options next to each field.

Tip: For a Like command, there is no requirement for regular expressions. You
can specify a substring and select the Like operator from MWM.

3. Click the calendar icon to select the Start Time and End Time for the
maintenance time window.

4. Click Add Window to create the window.
5. Click View Windows to see the configured window.

Creating a recurring maintenance window
Create a recurring maintenance time window for a particular asset.

Procedure
1. Click the Add Recurring link to view the form for creating the different types

of recurring time windows.
2. Enter the appropriate values in the fields Node, AlertGroup, AlertKey, and

Location.
Select the Equals or Like options next to each field.

3. Select the Start Time and End Time for the maintenance time window.
4. Select the type of recurring window and complete the details.
v Recurring Day of Week These windows occur every week on the same day

and at the same time of day. For example, you can set the window to every
Saturday from 5 p.m. to 12 a.m. Or you can set the window for multiple
days such as Saturday, Sunday, and Monday from 5 p.m. to 12 a.m.

v Recurring Day of Month These windows occur every month on the same
date at the same time of day. For example, you can set the window to every
month on the 15th from 7 a.m. to 8 a.m. Or you can set the window for
multiple months.

v Every nth Weekday These windows occur every month on the same day of
the week at the same time. For example, you can set the window to the first
and third Saturday of the month from 5 p.m. to 12 a.m.

5. Click Add Window to create the window.
6. Click View Windows to verify that your time window has been added.

Viewing maintenance windows
Click the View Windows link to view a toolbar which contains links to the
different types of windows. Your viewing options are:
v One Time

v Day of Week

316 Netcool/Impact: Solutions Guide

v Day of Month

v nth Weekday

v Active Windows

If maintenance windows are defined in any of these window categories, click a
link to view a list of defined maintenance windows.

The color of the status icon indicates whether the window is active (green), expired
(red), or has not started yet (blue, future).

You can use the delete icon to delete a maintenance window.

Maintenance Window Management and other Netcool/Impact
policies
Maintenance Window Management (MWM) runs independently from other
Netcool/Impact policies or OMNIbus automations. Every seven seconds, MWM
checks for open maintenance windows and marks the appropriate events as being
in maintenance. Take this feature into consideration when you add your own
policies and automations.

Known shortcomings

If there are overlapping time windows, there is a chance that an event could be
temporarily flagged as out of maintenance when the first window ends. If this
situation occurs, the event is flagged as in maintenance the next time the
MWMActivator Service runs. The clearFlag property comes to play here. If the
clearFlag = FALSE, then the event is never marked as out of maintenance.

Maintenance Window Management does not work properly if the default cluster
name, NCICLUSTER, is not used. When the MWM main page opens, you see the
following message:
Could not retrieve a client for accessing the Impact server, under cluster:
clustername

For information about how to resolve this issue, see the Troubleshooting Guide.

Chapter 17. Configuring Maintenance Window Management 317

318 Netcool/Impact: Solutions Guide

Chapter 18. Configuring Event Isolation and Correlation

Event Isolation and Correlation is provided as an additional component of the
Netcool/Impact product. Event Isolation and Correlation is developed using the
operator view technology in Netcool/Impact. You can set up Event Isolation and
Correlation to isolate an event that has caused a problem. You can also view the
events dependent on the isolated event.

Overview
Netcool/Impact has a predefined project, EventIsolationAndCorrelation that
contains predefined data sources, data types, policies, and operator views. When
all the required databases and schemas are installed and configured you must set
up the data sources. Then, you can create the event rules using the objectserver sql
in the Event Isolation and Correlation configuration view from the Tivoli
Integrated Portal. You can view the event analysis in the operator view,
EIC_Analyze.

To set up and run the Event Isolation and Correlation feature the following steps
need to be completed.
1. Install Netcool/Impact.
2. Install DB2 or use an existing DB2 installation.
3. Configure the DB2 database with the DB2 Schema in the Netcool/Impact

launchpad.
4. Install Discovery Library toolkit from the Netcool/Impact launchpad.

If you already have a Tivoli® Application Dependency Discovery Manager
(TADDM) installation, configure the discovery library toolkit to consume the
relationship data from TADDM. You can also consume the data is through the
loading of Identity Markup Language (IDML) books. For additional
information about the discovery library toolkit, see the Tivoli Business Service
Manager Administrator's Guide and the Tivoli Business Service Manager
Customization Guide. These guides are available in the Tivoli Business Service
Manager 6.1.1.5 information center available from the following URL,
Documentation for all Tivoli products.
You can load customized name space or your own model into SCR in by using
the SCR API in TBSM. For more information see Tivoli Business Service Manager
Customization Guide, Customizing the import process of the Service Component
Repository, Service Component Repository API overview.

5. In the Tivoli Integrated Portal, configure the data sources and data types in the
EventIsolationAndCorrelation project to use with the Impact Server.

6. Create the event rules in the UI to connect to the Impact Server.
7. Configure WebGUI to add a new launch point.

Detailed information about setting up and configuring Event Isolation and
Correlation, is in the Netcool/Impact Solutions Guide.

Installing Netcool/Impact and the DB2 database
To run the Event Isolation and Correlation feature, install Netcool/Impact and the
DB2 database and configure the DB2 Schema.

© Copyright IBM Corp. 2006, 2016 319

http://www.ibm.com/tivoli/documentation

Procedure
1. Install Netcool/Impact. Refer to Netcool/Impact Administration Guide, Chapter 2

Installation and migration.
2. Install DB2. Netcool/Impact and Tivoli Business Service Manager support DB2

version 9.5 or higher. For information about installing and using DB2, see the
information center listed here for the version you are using:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/
com.ibm.db2.luw.common.doc/doc/t0021844.html.
v In a z/Linux environment, you have to manually install the DB2 schema

from the command line and not from the launchpad. Run the following
command from the command line:
launchpad/zlinux/setup-dbconfig-zlinux.bin.

3. Configure the DB2 database with the DB2 schema. A user who has permissions
to run the DB2 command-line tools completes this step.
v For Unix, use the user ID db2inst1.
v For Windows, use the user ID db2admin.

You can install the DB2 schema from the Netcool/Impact launchpad.

Installing the Discovery Library Toolkit
Install the discovery library toolkit, to import the discovered resources and
relationships into the Services Component Registry database.

About this task

For information about the Services Component Registry see the Services Component
Registry API information in the Tivoli Business Service Manager Customization Guide
available from the following url, https://www.ibm.com/developerworks/wikis/
display/tivolidoccentral/Tivoli+Business+Service+Manager.

Use the discovery library toolkit to import data from Tivoli® Application
Dependency Discovery Manager 7.1 or later to Tivoli Business Service Manager.
The toolkit also provides the capability of reading discovery library books in
environments that do not have a Tivoli Application Dependency Discovery
Manager installation.
v If you are using Tivoli Business Service Manager and Netcool/Impact, use the

information in Installing the Discovery Library Toolkit in the Tivoli Business Service
Manager Installation Guide available in the Tivoli Business Service Manager 6.1.1.5
information center available from the following url, https://www.ibm.com/
developerworks/wikis/display/tivolidoccentral/
Tivoli+Business+Service+Manager.

v For a Netcool/Impact implementation that does not use Tivoli Business Service
Manager, the discovery library toolkit can be installed from the Netcool/Impact
launchpad. For the Tivoli Business Service Manager related information, the data
source must be configured to access the db2 database. This information is not
required for an Netcool/Impact installation.

Procedure
1. From the Netcool/Impact launchpad, select Install Discovery Library Toolkit.
2. Unzip DiscoveryLibraryToolkit.zip, to a local directory where you are

installing the database schema and or discovery library toolkit.
3. Navigate to the OS directory in which you are installing the discovery library

toolkit.

320 Netcool/Impact: Solutions Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.common.doc/doc/t0021844.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.common.doc/doc/t0021844.html
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager

4. Execute the setup-dbconfig-<osname>.bin file to install the database schema.
5. To install the discovery library toolkit, execute the setup-dltoolkit-

<osname>.binfile. Where osname is either Linux, Windows, Aix, or Solaris.
6. During the installation of the discovery library toolkit, there are options to

configure the Tivoli Business Service Manager data server. You can add any
values you want. These values are not used in Netcool/Impact.

Event Isolation and Correlation policies
The EventIsolationAndCorrelation project has a list of predefined polices that are
specific to Event Isolation and Correlation.

The following policies are in the EventIsolationAndCorrelation project and
support the Event Isolation and Correlation feature and must not be modified:
v EIC_IsolateAndCorrelate

v EIC_eventrule_config

v EIC_utils

v Opview_EIC_Analyze

v Opview_EIC_confSubmit

v Opview_EIC_configure

v Opview_EIC_requestHandler

Event Isolation and Correlation operator views
The EventIsolationAndCorrelation project has a list of predefined operator views
that are specific to Event Isolation and Correlation.
v EIC_Analyze shows the analysis of an event query.
v EIC_confSubmit supports the configuration of Event Isolation and

Configuration.
v EIC_configure configures the event rules for Event Isolation and Configuration.
v EIC_requestHandler supports the configuration of Event Isolation and

Configuration.

Configuring Event Isolation and Correlation data sources
All the Event Isolation and Correlation-related features are associated with the
project, EventIsolationAndCorrelation. Configure the necessary data sources, data
types, and data items for the event isolation and correlation.

Procedure
1. From the Tivoli Integrated Portal, click System Configuration > Event

Automation > Data Model.
2. From the project list, select the project EventIsolationAndCorrelation. A list of

data sources specific to the EventIsolationAndCorrelation feature display.
v EIC_alertsdb

v SCR_DB

v EventrulesDB

3. For each data source, update the connection information, user ID, and
password and save it.

4. Configure EIC_alertsdb to the object server where the events are to be
correlated and isolated.

Chapter 18. Configuring Event Isolation and Correlation 321

5. Configure SCR_DB to the Services Component Registry database.

Note: When configuring the Services Component Registry (SCR) data sources,
you must point the data sources to what is commonly called the SCR. The SCR
is a schema within the TBSM database that is created when you run the DB2
schema configuration step. The schema is called TBSMSCR. The database has a
default name of TBSM.

6. Configure EventRulesDB to the Services Component Registry database.

Configuring Event Isolation and Correlation data types
The EventIsolationAndCorrelation project has a list of predefined data types that
are specific to Event Isolation and Correlation. Except for the data type
EIC_alertquery which you must configure, the remaining data types are
preconfigured and operate correctly once the parent data sources are configured.

About this task

The following list shows the Event Isolation and Correlation data sources and their
data types:
v EIC_alertsdb

– EIC_alertquery

v SCR_DB

The following data types are used to retrieve relationship information from the
Services Component Registry.
– bsmidenties

– getDependents

– getRscInfo

v EventRulesDB

The following data types used by the database contain the end user
configuration for Event Isolation and Correlation.
– EVENTRULES

– EIC_PARAMETERS

Procedure
1. To configure the EIC_alertquery data type, right click on the data type and

select Edit.
2. The Data Type Name and Data Source Name are prepopulated.
3. The State check box is automatically selected as Enabled to activate the data

type so that it is available for use in policies.
4. Base Table: Specifies the underlying database and table where the data in the

data type is stored.
5. Click Refresh to populate the table. The table columns are displayed as fields

in a table. To make database access as efficient as possible, delete any fields
that are not used in policies. For information about adding and removing fields
from the data type see “SQL data type configuration window - Table
Description tab” on page 22.

6. Click Save to implement the changes.

322 Netcool/Impact: Solutions Guide

Creating, editing, and deleting event rules
How to create, edit, and delete an event rule for Event Isolation and Correlation.

Procedure
1. Select System Configuration > Event Automation > Event Isolation and

Correlation to open the Event Isolation and Correlation page tab.
2. Click the Create New Rule icon to create an Event Rule. While creating this

item the configure page has empty values for various properties.
3. Click the Edit the Selected Rule icon to edit the existing event rules.
4. Click the Delete the Selected Rule icon to delete an event rule from the system

and the list.

Creating an event rule
Complete the following fields to create an event rule.

Procedure
1. Event Rule Name: Specify the event rule name. The event rule name must be

unique across this system. When you select Edit or New if you specify an
existing event rule name, the existing event rule is updated. When you edit an
event rule and change the event rule name, a new event rule is created with
the new name.

2. Primary Event: Enter the SQL to be executed against the objectserver
configured in the data source EIC_alerts db. The primary event is the event
selected for analysis.
The primary event filter is used to identify if the event that was selected for
analysis has a rule associated with it. The primary event filter is also is used
to identify the object in the Services Component Registry database that has the
event associated with it. The object may or may not have dependent entities.
During analysis, the event isolation and correlation feature finds all the
dependent entities and there associated events.
For example, the primary event has 3 dependent or child entities and each of
these entities has 3 events has associated with it. In total there are 9
dependent events. Any of these secondary events could be the cause of the
primary event. This list of events is what is termed the list of secondary
events. The secondary event filter is used to isolate one or more of these
events to be the root cause of the issue.

3. Test SQL: Click Test SQL to test the SQL syntax specified in the primary
event. Modify the query so that only one row is returned. If there are multiple
rows, you can still configure the rule. However, during analysis only the first
row from the query is used to do the analysis.

4. Secondary Events: The text area is for the SQL to identify the dependent
events. When you specify the dependent events, you can specify variables or
parameters which can be substituted from the primary event information. The
variables are specified with the @ sign. For example, if the variable name is
dbname, it must be specified as @dbname@. An example is Identifier =
'BusSys Level 1.2.4.4' and Serial = @ser@. The variables are replaced
during the analysis step. The information is retrieved from the primary event
based on the configuration in the parameters table and displays in the
Variables Assignment section of the page.

5. Extract parameters: Click Extract Parameters to extract the variable name
between @ and populate the parameter table. Once the variable information is
extracted into the table, you can edit each column.

Chapter 18. Configuring Event Isolation and Correlation 323

a. Select the field against the regular expression you want to execute, and a
substitution value is extracted.

b. Enter the regular expression in the regular expression column. The regular
expression follows the IPL Syntax and is executed using the RExtract
function.

c. When the regular expression is specified, click Refresh to validate the
regular expression and check that the correct value is extracted. The table
contains the parameters.

6. Limit Analysis results to related configuration items in the Service
Component Registry: Select this check box if the analysis is to be limited to
related configuration items only. If the check box is not selected, the
dependent query will be returned.

7. Primary Event is a root cause event: Select this check box to identify whether
the primary event is the cause event and rest of events, are symptom only
events.

8. Event Field: Identifies the field in the event which contains the resource
identifier in the Services Component Registry. Select the field from the
drop-down menu that holds the resource identifier in the event.

9. Time window in seconds to correlate events: Add the time period the event
is to analyze. The default value is 600 seconds. The events that occurred 600
seconds prior to the primary event are analyzed.

10. Click Save Configuration to add the configuration to the backend database.
11. Now the event rules are configured, the event is ready to be analyzed. You

can view the event analysis in the in the EIC_Analyze page.

Configuring WebGUI to add a new launch point
Configure the WebGUI with a launch out context to launch the analysis page.

About this task

WebGUI can be configured to launch the analysis page. Refer to the procedure for
launch out integration described in the following URL, http://
publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.netcool_OMNIbus.doc_7.4.0/webtop/wip/task/
web_con_integrating.html.

The URL you need for Event Isolation and Correlation is
<TIPHOSTNAME>:<TIPPORT>/opview/displays/NCICLUSTER-EIC_Analyze.html. Pass the
serial number of the selected row for the event.

Note: NCICLUSTER is the name of the cluster configured during the installation of
Netcool/Impact. You must use the name of your cluster whatever it is, in the URL.
For example, in Tivoli Business Service Manager the default cluster name is
TBSMCLUSTER. To launch from Tivoli Business Service Manager, you would need to
use the following html file, TBSMCLUSTER-EIC_Analyze.html.

Launching the Event Isolation and Correlation analysis page
How to launch the Event Isolation and Correlation analysis page.

324 Netcool/Impact: Solutions Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.4.0/webtop/wip/task/web_con_integrating.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.4.0/webtop/wip/task/web_con_integrating.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.4.0/webtop/wip/task/web_con_integrating.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.4.0/webtop/wip/task/web_con_integrating.html

About this task

There are two ways to launch the Event Isolation and Correlation analysis page.
v Manually by using the webpage and Event Serial number.
v Using the launch out functionality on Active Event List (AEL) or Lightweight

Event List (LEL) from WebGUI in the Tivoli Enterprise Portal.

Procedure

Open a browser on Netcool/Impact. Use one of the following options:
v Point to <TIPServer>:<TIPPort>/opview/displays/NCICLUSTER-

EIC_Analyze.html?serialNum=<EventSerialNumber>. Where <TIPServer> and
<TIPPort>are the Netcool/Impact GUI Server and port and EventSerialNumber is
the serial number of the event you want to analyze. To launch the analysis page
outside of the AEL (Action Event List), you can add serialNum=<Serial Number>
as the parameter.

v The Event Isolation and Correlation analysis page can be configured to launch
from the Active Event List (AEL) or LEL (Lightweight Event List) within
WebGUI. For more information see, “Configuring WebGUI to add a new launch
point” on page 324. When you create the tool you have to specify only
<TIPSERVER>:port/opview/displays/NCICLSTER-EIC_Analyze.html. You do not
have to specify SerialNum as the parameter, the parameter is added by the AEL
tool.

Viewing the Event Analysis
View the analysis of an Event query in the EIC_Analyze page.

About this task

The input for the EIC_IsolateAndCorrelate policy is the serial number of the event
through the serialNum variable. The policy looks up the primary event to retrieve
the resource identifier. The policy then looks up the dependent events based on the
configuration. The dependent events are further filtered using the related
resources, if the user has chosen to limit the analysis to the related resources. Once
the serial number has been passed as the parameter in WebGUI, you can view the
event from the AEL or LEL and launch the Analyze page.

Procedure

Select the event from the AEL or LEL and launch the Analyze page. The
EIC_Analyze page contains three sections:
v Primary Event Information: shows the information on the selected event. This is

the event on which the event isolation and correlation analysis takes place.
v Correlated Events: shows information about the dependent events identified by

the tool. Dependant events are identified as the events that are associated with
the dependant child resources of the device or object that is associated with the
primary event. These events are displayed in the context of dependent resources
that were identified from the Services Component Registry.

v Event Rule process: shows the rule which was identified and processed when
this primary event was analyzed.

Chapter 18. Configuring Event Isolation and Correlation 325

326 Netcool/Impact: Solutions Guide

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features you can use with Netcool/Impact when accessing it on
the IBM Personal Communications terminal emulator:
v You can operate all features using the keyboard instead of the mouse.
v You can read text through interaction with assistive technology.
v You can use system settings for font, size, and color for all user interface

controls.
v You can magnify what is displayed on your screen.

For more information about viewing PDFs from Adobe, go to the following web
site: http://www.adobe.com/enterprise/accessibility/main.html

© Copyright IBM Corp. 2006, 2016 327

328 Netcool/Impact: Solutions Guide

Glossary

This glossary includes terms and definitions for Netcool/Impact.

The following cross-references are used in this glossary:
v See refers you from a term to a preferred synonym, or from an acronym or

abbreviation to the defined full form.
v See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/
globalization/terminology (opens in new window).

A
assignment operator

An operator that sets or resets a value to a variable. See also operator.

B
Boolean operator

A built-in function that specifies a logical operation of AND, OR or NOT
when sets of operations are evaluated. The Boolean operators are &&, ||
and !. See also operator.

C
command execution manager

The service that manages remote command execution through a function in
the policies.

command line manager
The service that manages the command-line interface.

Common Object Request Broker Architecture (CORBA)
An architecture and a specification for distributed object-oriented
computing that separates client and server programs with a formal
interface definition.

comparison operator
A built-in function that is used to compare two values. The comparison
operators are ==, !=, <, >, <= and >=. See also operator.

control structure
A statement block in the policy that is executed when the terms of the
control condition are satisfied.

CORBA
See Common Object Request Broker Architecture.

D
database (DB)

A collection of interrelated or independent data items that are stored
together to serve one or more applications. See also database server.

© Copyright IBM Corporation 2005, 2011 © IBM 2006, 2016 329

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

database event listener
A service that listens for incoming messages from an SQL database data
source and then triggers policies based on the incoming message data.

database event reader
An event reader that monitors an SQL database event source for new and
modified events and triggers policies based on the event information. See
also event reader.

database server
A software program that uses a database manager to provide database
services to other software programs or computers. See also database.

data item
A unit of information to be processed.

data model
An abstract representation of the business data and metadata used in an
installation. A data model contains data sources, data types, links, and
event sources.

data source
A repository of data to which a federated server can connect and then
retrieve data by using wrappers. A data source can contain relational
databases, XML files, Excel spreadsheets, table-structured files, or other
objects. In a federated system, data sources seem to be a single collective
database.

data source adapter (DSA)
A component that allows the application to access data stored in an
external source.

data type
An element of a data model that represents a set of data stored in a data
source, for example, a table or view in a relational database.

DB See database.

DSA See data source adapter.

dynamic link
An element of a data model that represents a dynamic relationship
between data items in data types. See also link.

E
email reader

A service that polls a Post Office Protocol (POP) mail server at intervals for
incoming email and then triggers policies based on the incoming email
data.

email sender
A service that sends email through an Simple Mail Transfer Protocol
(SMTP) mail server.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event processor
The service responsible for managing events through event reader, event

330 Netcool/Impact: Solutions Guide

listener and email reader services. The event processor manages the
incoming event queue and is responsible for sending queued events to the
policy engine for processing.

event reader
A service that monitors an event source for new, updated, and deleted
events, and triggers policies based on the event data. See also database
event reader, standard event reader.

event source
A data source that stores and manages events.

exception
A condition or event that cannot be handled by a normal process.

F
field A set of one or more adjacent characters comprising a unit of data in an

event or data item.

filter A device or program that separates data, signals, or material in accordance
with specified criteria. See also LDAP filter, SQL filter.

function
Any instruction or set of related instructions that performs a specific
operation. See also user-defined function.

G
generic event listener

A service that listens to an external data source for incoming events and
triggers policies based on the event data.

graphical user interface (GUI)
A computer interface that presents a visual metaphor of a real-world scene,
often of a desktop, by combining high-resolution graphics, pointing
devices, menu bars and other menus, overlapping windows, icons and the
object-action relationship. See also graphical user interface server.

graphical user interface server (GUI server)
A component that serves the web-based graphical user interface to web
browsers through HTTP. See also graphical user interface.

GUI See graphical user interface.

GUI server
See graphical user interface server.

H
hibernating policy activator

A service that is responsible for waking hibernating policies.

I
instant messaging reader

A service that listens to external instant messaging servers for messages
and triggers policies based on the incoming message data.

Glossary 331

instant messaging service
A service that sends instant messages to instant messaging clients through
a Jabber server.

IPL See Netcool/Impact policy language.

J
Java Database Connectivity (JDBC)

An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call level interface for SQL-based and XQuery-based database access.

Java Message Service (JMS)
An application programming interface that provides Java language
functions for handling messages.

JDBC See Java Database Connectivity.

JMS See Java Message Service.

JMS data source adapter (JMS DSA)
A data source adapter that sends and receives Java Message Service (JMS)
messages.

JMS DSA
See JMS data source adapter.

K
key expression

An expression that specifies the value that one or more key fields in a data
item must have in order to be retrieved in the IPL.

key field
A field that uniquely identifies a data item in a data type.

L
LDAP See Lightweight Directory Access Protocol.

LDAP data source adapter (LDAP DSA)
A data source adapter that reads directory data managed by an LDAP
server. See also Lightweight Directory Access Protocol.

LDAP DSA
See LDAP data source adapter.

LDAP filter
An expression that is used to select data elements located at a point in an
LDAP directory tree. See also filter.

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to provide access to directories that
support an X.500 model and that does not incur the resource requirements
of the more complex X.500 Directory Access Protocol (DAP). For example,
LDAP can be used to locate people, organizations, and other resources in
an Internet or intranet directory. See also LDAP data source adapter.

link An element of a data model that defines a relationship between data types
and data items. See also dynamic link, static link.

332 Netcool/Impact: Solutions Guide

M
mathematic operator

A built-in function that performs a mathematic operation on two values.
The mathematic operators are +, -, *, / and %. See also operator.

mediator DSA
A type of data source adaptor that allows data provided by third-party
systems, devices, and applications to be accessed.

N
Netcool/Impact policy language (IPL)

A programming language used to write policies.

O
operator

A built-in function that assigns a value to a variable, performs an operation
on a value, or specifies how two values are to be compared in a policy. See
also assignment operator, Boolean operator, comparison operator,
mathematic operator, string operator.

P
policy A set of rules and actions that are required to be performed when certain

events or status conditions occur in an environment.

policy activator
A service that runs a specified policy at intervals that the user defines.

policy engine
A feature that automates the tasks that the user specifies in the policy
scripting language.

policy logger
The service that writes messages to the policy log.

POP See Post Office Protocol.

Post Office Protocol (POP)
A protocol that is used for exchanging network mail and accessing
mailboxes.

precision event listener
A service that listens to the application for incoming messages and triggers
policies based on the message data.

S
security manager

A component that is responsible for authenticating user logins.

self-monitoring service
A service that monitors memory and other status conditions and reports
them as events.

server A component that is responsible for maintaining the data model, managing
services, and running policies.

Glossary 333

service
A runnable sub-component that the user controls from within the graphical
user interface (GUI).

Simple Mail Transfer Protocol (SMTP)
An Internet application protocol for transferring mail among users of the
Internet.

Simple Network Management Protocol (SNMP)
A set of protocols for monitoring systems and devices in complex
networks. Information about managed devices is defined and stored in a
Management Information Base (MIB). See also SNMP data source adapter.

SMTP See Simple Mail Transfer Protocol.

SNMP
See Simple Network Management Protocol.

SNMP data source adapter (SNMP DSA)
A data source adapter that allows management information stored by
SNMP agents to be set and retrieved. It also allows SNMP traps and
notifications to be sent to SNMP managers. See also Simple Network
Management Protocol.

SNMP DSA
See SNMP data source adapter.

socket DSA
A data source adaptor that allows information to be exchanged with
external applications using a socket server as the brokering agent.

SQL database DSA
A data source adaptor that retrieves information from relational databases
and other data sources that provide a public interface through Java
Database Connectivity (JDBC). SQL database DSAs also add, modify and
delete information stored in these data sources.

SQL filter
An expression that is used to select rows in a database table. The syntax
for the filter is similar to the contents of an SQL WHERE clause. See also
filter.

standard event reader
A service that monitors a database for new, updated, and deleted events
and triggers policies based on the event data. See also event reader.

static link
An element of a data model that defines a static relationship between data
items in internal data types. See also link.

string concatenation
In REXX, an operation that joins two characters or strings in the order
specified, forming one string whose length is equal to the sum of the
lengths of the two characters or strings.

string operator
A built-in function that performs an operation on two strings. See also
operator.

334 Netcool/Impact: Solutions Guide

U
user-defined function

A custom function that can be used to organize code in a policy. See also
function.

V
variable

A representation of a changeable value.

W
web services DSA

A data source adapter that exchanges information with external
applications that provide a web services application programming interface
(API).

X
XML data source adapter

A data source adapter that reads XML data from strings and files, and
reads XML data from web servers over HTTP.

Glossary 335

336 Netcool/Impact: Solutions Guide

Index

A
accessibility viii, 327
activating 119
add-ons

Maintenance Window
Management 313, 314, 315, 316, 317

array 81
arrays 134

finding distinct values 135
finding the length 135

B
books

see publications vii, viii
Button widget 204

C
Cache Settings tab

External Data Types editor 27
caching

count caching 33
data caching 32
query caching 33

CommandResponse 130
Configuration 149
configuring data sources 321
configuring data types 322
context 83
conventions

typeface xii
Creating a policy 150
Creating a service 152
Creating an event rule 323
Creating editing and deleting an event

rule 323
Custom Fields tab

internal data types editor 19
customer support x

D
data

adding 110, 111
deleting 113, 114
retrieving by filter 101
retrieving by key 107
retrieving by link 109
updating 112

data caching 27
data items 6, 101

field variables 101
data model 1

components 5
creating 3

data models
architecture 7
examples 7

data models (continued)
setting up 6

data source
connection information 13

data sources
architecture 12
categories 10
creating 13
JMS 12
LDAP 11
Mediator DSA 11
overview 5, 10
setting up 13
SQL database 11

data type
auto-populating 28
data item ordering 29
getting name of structural

element 18
LDAP 14, 29
SQL 14

data type caching 27
data type field

description 17
display name 17
field name 16
format 17
ID 16

data types 5, 25
caching 32
categories 14
configuring internal 18
configuring LDAP 30
configuring SQL 21
configuring SQL data types

Table Description tab 22
data item filter 28
external 13
fields 16
internal 13, 15
internal data types editor 19
keys 18
mediator 14
Mediator DSA 32
overview 13
predefined 13
predefined internal 15
setting up 18
SQL 21
system 15
user-defined internal 16

database event listener
creating call spec 54
creating triggers 55, 57, 58, 59
editing listener properties file 52
editing nameserver.props file 51
example triggers 60, 61, 62, 63, 64,

65, 66
granting database permissions 53
installing client files into Oracle 52
sending database events 54

database event listener (continued)
setting up database server 50
writing policies 67, 68

database functions
calling 114

DataItem (built-in variable) 101
DataItems (built-in variable) 101
directory names

notation xii
disability 327
dynamic links 34

link by filter 35
link by key 35
link by policy 35
setting up 36

E
education

See Tivoli technical training
enterprise service model

elements 8
environment variables

notation xii
event container 95
event container variables

user-defined 96
event enrichment 2
event fields

accessing 96
updating 96
variables 95

event gateway 3
Event Isolation and Correlation 319, 320,

321, 322, 323
Event Isolation and Correlation operator

views 321
Event Isolation and Correlation

polices 321
event notification 2
event querying

reading state file 44
event reader

actions 49
event locking 49
event matching 49
event order 50
mapping 48

event readers
architecture 43
configuration 44
process 43

event sources 37
Architecture 38
non-ObjectServer 37
ObjectServer 37

event state variables 96
EventContainer (built-in variable) 95
events 95

adding journal entries to 97
deleting 99

© Copyright IBM Corp. 2006, 2016 337

events (continued)
sending new 98

Exporting and Importing
ForImpactMigration 150

external data type
editor 22

external data types
configuring SQL 21
editor 25
LDAP 30
Mediator DSA 32

F
filters 102

LDAP filters 103
Mediator filters 104
SQL filters 102

fixes
obtaining ix

functions
user-defined 87

G
glossary 329

H
hibernating policy activator

configuration 76
hibernations 117

removing 120
retrieving 118
waking 119

I
If statements 84
Impact policy language 79
Installing Discovery Library Toolkit 320
Installing Self Service Dashboard

widgets 201
Installing the DB2 data base 320
instant messaging 123
Integrating data from a policy with the

topology widget 177
internal data repository 12
internal data types

configuring 18
editor

Custom Fields tab 19
IPL

See Impact policy language

J
Jabber 123
JavaScript and the UI Data Provider 211
JMS

data source 12
JRExec server

configuring 128
logging 129
overview 127

JRExec server (continued)
running commands 129
starting 127
stopping 128

K
key expressions 107
keys 107

multiple key expressions 107

L
Large data model support 205
large data models 206
Launching the Event Isolation and

Correlation analysis page 325
LDAP data sources

creating 11
LDAP External Data Type editor

LDAP Info tab 30
LDAP external data types 30
LDAP filters 103
links 6, 33

categories 34
dynamic 34
overview 33, 109
setting up 35
static 34

M
manuals

see publications vii, viii
Mediator DSA

data sources 11
data types 32

Mediator filters 104
multiple key expressions 107
MWM

See Maintenance Window
Management

N
Netcool/Impact data types as OSLC

resources 218
notation

environment variables xii
path names xii
typeface xii

O
ObjectServer event source

setting up 38
omnibus event listener

triggers 70
using ReturnEvent 71

omnibus event reader
event querying 44
event queueing 44

OMNIbus triggers 72
OMNIbusEventListener 72

online publications
accessing viii

operator view EIC_Analyze 325
ordering publications viii
OSLC 215
OSLC and data types 218
OSLC introduction 215
OSLC resource shapes for data

types 221
OSLC resources and identifiers 217
OSLC Security 257
Overview 149, 319

P
PassToTBSM 149, 150, 152
path names

notation xii
percentage 179
policies

creating 3
hibernating 117

policy 1
language 79
retrieving data by filter 105, 106
retrieving data by key 108
retrieving data by link 109

policy activators
configuration 73

policy context 79
policy log 79

printing to 80
policy logger

configuration 74
policy scope 79
policylogger 76
problem determination and resolution xi
projects 150
publications vii

accessing online viii
ordering viii

Q
query caching 27

R
RDFRegister function 234, 269
RDFUnRegister function 237, 272

S
scheduling policies 89

policy activator 89
schedules 90, 91, 92, 93

Self service dashboard widgets 200
service

command execution manager 77
command line manager 77
database event listener 50, 54
hibernating policy activator 76
omnibus event listener 70
OMNIbus event listener 69
OMNIbus event reader 42, 45, 46

338 Netcool/Impact: Solutions Guide

service (continued)
policy activator 73
policy logger 74

service model
enterprise 8

services
overview 41
predefined 41
setting up 3
user-defined 42
working with 1, 41

Software Support
contacting x
overview ix
receiving weekly updates ix

solution
running 4

solution components 1
solutions

setting up 3
types 2

SQL data types
adding a field to the table 25
configuring 21, 22

SQL filters 102
static links 34
Status 179
strings 131

changing the case 134
concatenating 131
encrypting and decrypting 134
extracting a substring 132
finding the length 131
replacing a substring 133
splitting into substrings 132
stripping a substring 133
trimming whitespace 133

Sybase data types
Setting the Exclude this field

option 25

T
Table Description tab

SQL External Data Types editor 22
Tivoli Information Center viii
Tivoli technical training viii
training

Tivoli technical viii
typeface conventions xii

U
Uninstalling the Self Service Dashboard

widgets 202
updating data 111
user-defined functions 87
using Spid 72

V
variables

event field 95
event state 96
notation for xii
user-defined 80

Viewing Event Isolation and Correlation
results 324, 325

W
Web hosting model 9

elements 9
WebGUI 324
While statements 85
working with data models 5

X
x events in y time 2

Index 339

340 Netcool/Impact: Solutions Guide

IBM®

Printed in USA

SC14-7560-01

	Contents
	Solutions Guide
	Intended audience
	Publications
	Netcool/Impact library
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support for problem solving
	Obtaining fixes
	Receiving weekly support updates
	Contacting IBM Software Support
	Determining the business impact
	Describing problems and gathering information
	Submitting problems

	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. Solutions overview
	Solution components
	Data models
	Working with services
	Policies

	Solution types
	Event enrichment solution
	X events in Y time solution
	Event notification solution
	Event gateway solution

	Setting up a solution
	Creating a data model
	Setting up services
	Creating policies

	Running a solution

	Chapter 2. Working with data models
	Data model components
	Data sources
	Configuring data types
	Working with data items
	Working with links

	Setting up a data model
	Data model architecture
	Data model examples
	Enterprise service model
	Enterprise service model elements

	Web hosting model
	Web hosting model elements

	Working with data sources
	Data sources overview
	Data source categories
	SQL database data sources
	LDAP data sources
	Mediator data sources
	Internal data repository
	JMS data source

	Data source architecture
	Setting up data sources
	Getting the connection information
	Creating data sources

	Working with data types
	Data types overview
	Data type categories
	SQL database data types
	LDAP data types
	Mediator data types
	Internal data types

	Data type fields
	ID
	Field name
	Format
	Display name
	Description

	Data type keys
	Setting up data types
	Getting the name of the structural element
	Configuring internal data types
	SQL data types
	LDAP data types
	Mediator DSA data types

	Data type caching
	Configuring data caching
	Configuring query caching
	Count caching

	Working with links
	Links overview
	Link categories
	Static links
	Dynamic links
	Link by filter
	Link by key
	Link by policy

	Setting up static links
	Setting up dynamic links

	Working with event sources
	Event sources overview
	ObjectServer event sources
	Non-ObjectServer event sources
	Event source architecture
	Setting up ObjectServer event sources

	Chapter 3. Working with services
	Services overview
	Predefined services
	User-defined services
	Database event reader service
	OMNIbus event reader service
	OMINbus event reader architecture
	OMNIbus event reader process
	Event querying
	Event queuing

	OMNIbus event reader configuration
	OMNIbus event reader service General Settings tab
	OMNIbus event reader service Event Mapping tab
	Mappings
	Event matching
	Actions
	Event locking
	Event order

	Database event listener service
	Setting up the database server
	Editing the nameserver.props file for the database client
	Editing the listener properties file
	Installing the client files into Oracle
	Granting database permissions

	Database event listener service configuration window
	Sending database events
	Creating the call spec
	Creating triggers

	Writing database event policies
	Handling incoming database events
	Returning events to the database

	OMNIbus event listener service
	Setting up the OMNIbus event listener service
	How to check the OMNIbus event listener service logs
	Creating Triggers
	Using the ReturnEvent function
	Subscribing to individual channels
	Controlling which events get sent over from OMNIbus to Netcool/Impact using Spid

	Working with other services
	Policy activator service
	Policy activator configuration

	Policy logger service
	Policy logger configuration

	Hibernating policy activator service
	Hibernating policy activator configuration
	Hibernating policy activator configuration window

	Command execution manager service
	Command execution manager service configuration window

	Command line manager service
	Command line manager service configuration window

	Chapter 4. Working with policies
	Understanding policy language components
	Policy log
	Policy context
	Policy scope
	Printing to the policy log
	User-defined variables
	Array
	Context
	If statements
	While statements
	User-defined functions
	Scheduling policies
	Running policies using the policy activator
	Running policies using schedules
	Creating a schedule data type
	Creating task data types
	Creating task data items
	Adding the tasks to the schedule
	Writing a top scheduler policy
	Creating a policy activator

	Chapter 5. Handling events
	Events overview
	Event containers
	EventContainer variable
	Event field variables
	Event state variables
	User-defined event container variables
	Accessing event fields
	Using the dot notation
	Using the @ notation

	Updating event fields
	Adding journal entries to events
	Assigning the JournalEntry variable

	Sending new events
	Deleting events
	Examples of deleting an incoming event from the event source

	Chapter 6. Handling data
	Working with data items
	Field variables
	DataItem and DataItems variables

	Retrieving data by filter
	Working with filters
	SQL filters
	LDAP filters
	Mediator filters

	Retrieving data by filter in a policy
	Example of retrieving data from an SQL database data type
	Example of retrieving data from an LDAP data type
	Example of looking up data from a Smallworld DSA Mediator data type

	Retrieving data by key
	Keys
	Key expressions
	Multiple key expressions

	Retrieving data by key in a policy
	Example of returning data from a data type using a single key expression
	Example of returning data by key using a multiple key expression

	Retrieving data by link
	Links overview
	Retrieving data by link in a policy
	Example of retrieving data by link

	Adding data
	Example of adding a data item to a data type

	Updating data
	Example of updating single data items
	Example of updating multiple data items

	Deleting data
	Example of deleting single data items
	Example of deleting data items by filter
	Example of deleting data items by item

	Calling database functions

	Chapter 7. Handling hibernations
	Hibernations overview
	Hibernating a policy
	Examples of hibernating a policy

	Retrieving hibernations
	Retrieving hibernations by action key search
	Retrieving hibernations by filter

	Waking a hibernation
	Retrieving the hibernation
	Calling ActivateHibernation
	Example

	Removing hibernations

	Chapter 8. Sending email
	Sending email overview
	Sending an email

	Chapter 9. Setting up instant messaging
	Netcool/Impact IM
	Netcool/Impact IM components
	Netcool/Impact IM process
	Message listening
	Message sending

	Setting up Netcool/Impact IM
	Writing instant messaging policies
	Handling incoming messages
	Sending messages
	Example

	Chapter 10. Executing external commands
	External command execution overview
	Managing the JRExec server
	Overview of the JRExec server
	Starting the JRExec server
	Stopping the JRExec server
	The JRExec server configuration properties
	JRExec server logging
	Running commands using the JRExec server

	Using CommandResponse

	Chapter 11. Handling strings and arrays
	Handling strings
	Concatenating strings
	Finding the length of a string
	Splitting a string into substrings
	Extracting a substring from another string
	Extracting a substring using the word position
	Extracting a substring using regular expression matching

	Replacing a substring in a string
	Stripping a substring from a string
	Trimming white space from a string
	Changing the case of a string
	Encrypting and decrypting strings

	Handling arrays
	Finding the length of an array
	Finding the distinct values in an array

	Chapter 12. Event enrichment tutorial
	Tutorial overview
	Understanding the Netcool/Impact installation
	Understanding the business data
	Analyzing the workflow
	Creating the project
	Setting up the data model
	Creating the event source
	Creating the data sources
	Creating the data types
	Creating a dynamic link
	Reviewing the data model

	Setting up services
	Creating the event reader
	Reviewing the services

	Writing the policy
	Looking up device information
	Looking up business departments
	Increasing the alert severity
	Reviewing the policy

	Running the solution

	Chapter 13. Configuring the Impact policy PasstoTBSM
	Overview
	Configuration
	Exporting and Importing the ForImpactMigration project
	Creating a policy
	Creating a policy activator service
	Create a new template and rule to collect weather data
	Create the CityHumidity rule for the CityWeather template
	Create a city service
	Customizing a Service Tree portlet
	Adding a custom Services portlet to a freeform page

	Chapter 14. Working with the Netcool/Impact UI data provider
	Getting started with the UI data provider
	UI data provider components
	Configuring user authentication
	Data types and the UI data provider
	Integrating chart widgets and the UI data provider
	Names reserved for the UI data provider
	General steps for integrating the UI data provider and the console
	Setting up the remote connection between the UI data provider and the console
	Creating the data model
	Creating a page in the console
	Creating a widget on a page in the console

	Accessing data from Netcool/Impact policies
	Configuring user parameters
	Accessing Netcool/Impact object variables in a policy
	Accessing data types output by the GetByFilter function
	Accessing data types output by the DirectSQL function
	Creating custom schema values for output parameters

	Accessing an array of Impact objects with the UI data provider

	UI data provider and the IBM Dashboard Application Services Hub
	Filtering data in the console
	Integrating the tree widget with an Impact object or an array of Impact objects
	Integrating data from a policy with the topology widget
	Displaying status and percentage in a widget

	Visualizing data from the UI data provider in the console
	Example scenario overview
	Visualizing data from a DB2 database table in a line chart
	Visualizing data from a Netcool/Impact policy in a pie chart
	Visualizing data mashups from two web services in a table
	Visualizing data mashups with an array of Impact objects
	Visualizing data output by the GetByFilter policy function in a list
	Visualizing data output by the DirectSQL policy function in an analog gauge
	Visualizing data with the tree and topology widgets
	Filtering data output by a policy in the console
	Passing parameter values from a widget to a policy
	Passing parameter values from a table to a gauge
	Visualizing a data mashup from two IBM Tivoli Monitoring sources

	Visualizing data from the Netcool/Impact self service dashboards
	Installing the Netcool/Impact Self Service Dashboard widgets
	Uninstalling the Netcool/Impact Self Service Dashboard widgets

	Editing an Input Form widget
	Editing a Button widget
	Configuring the Button widget to receive data from other widgets

	Reference topics
	Large data model support for the UI data provider
	Disabling and enabling large data models

	UI data provider customization
	Accessing the Netcool/Impact UI data provider
	Accessing data sources from a UI data provider
	Accessing data sets from a UI data provider
	Known issues with JavaScript and the UI data provider
	Running policies and accessing output parameters
	UI data provider URLs

	Chapter 15. Working with OSLC for Netcool/Impact
	Introducing OSLC
	OSLC resources and identifiers
	OSLC roles

	Working with data types and OSLC
	Accessing Netcool/Impact data types as OSLC resources
	Retrieving OSLC resources that represent Netcool/Impact data items
	Displaying results for unique key identifier
	OSLC resource shapes for data types
	Viewing the OSLC resource shape for the data type

	Configuring custom URIs for data types and user output parameters

	Working with the OSLC service provider
	Creating OSLC service providers in Netcool/Impact
	Registering OSLC service providers with Netcool/Impact
	Registering OSLC resources
	Registering multiple resources
	RDFRegister
	RDFUnRegister

	Working with Netcool/Impact policies and OSLC
	Accessing output user parameters as OSLC resources
	OSLC and variables output by policy results
	Accessing arrays of variables from policy results
	Displaying the resource shapes for policy results
	OSLC and UI data provider compatible variables for policy results
	Configuring user parameters
	Accessing data types output by the GetByFilter function
	Accessing variables output by the DirectSQL function

	Configuring custom URIs for policy results and variables
	Passing argument values to a policy

	Configuring hover previews for OSLC resources
	Hover preview properties for OSLC resources

	Example scenario: using OSLC with Netcool/Impact policies
	OSLC reference topics
	OSLC urls
	OSLC pagination
	OSLC security
	Support for OSLC query syntax
	oslc.properties query parameter
	oslc.select query parameter
	Nested variables and wildcard queries

	RDF functions
	RDFModel
	RDFModelToString
	RDFModelUpdateNS
	RDFNodeIsResource
	RDFNodeIsAnon
	RDFParse
	RDFRegister
	RDFUnRegister
	RDFSelect
	RDFStatement

	Chapter 16. Service Level Objectives (SLO) Reporting
	SLO terminology overview
	SLO reporting prerequisites
	Installing and enabling SLO report package
	Defining service definition properties
	Service definition properties file
	Configuring the time zone

	Configuring business calendars
	Creating common properties in business calendars
	Business calendar properties file

	Retrieving SLA metric data
	SLO reporting policies
	SLO reporting policy functions
	addCorrelationValue
	recordMetric
	addCheckpointValue
	getCheckpointValue
	addSLAMetricWithOperationalHoursAndBusinessCalendar

	Using the getDataFromTBSMAvailability sample policy
	Configuring getDataFromTBSMAvailability

	Reports
	Example SLO reporting configuration
	Properties files examples
	Operational hours service level example
	Single SLA example
	Time zone example
	Simple service definition example
	Multiple identities in a service definition example
	Common US calendar properties
	US Calendar example
	Common calendar properties file example
	Canada calendar example
	SLA Utility properties

	SLO Utility Functions
	Maintaining the reporting data in the SLORPRT database
	Removing service, SLA, and calendar definitions
	Exporting service and calendar definitions
	Removing specific outage data
	Restoring outage data
	Setting SLO configuration values

	Chapter 17. Configuring Maintenance Window Management
	Activating MWM in a Netcool/Impact cluster
	Configure the MWM_Properties policy
	Configuring MWMActivator service properties
	Logging on to Maintenance Window Management
	About MWM maintenance windows
	Creating a one time maintenance window
	Creating a recurring maintenance window
	Viewing maintenance windows
	Maintenance Window Management and other Netcool/Impact policies

	Chapter 18. Configuring Event Isolation and Correlation
	Overview
	Installing Netcool/Impact and the DB2 database
	Installing the Discovery Library Toolkit
	Event Isolation and Correlation policies
	Event Isolation and Correlation operator views
	Configuring Event Isolation and Correlation data sources
	Configuring Event Isolation and Correlation data types
	Creating, editing, and deleting event rules
	Creating an event rule

	Configuring WebGUI to add a new launch point
	Launching the Event Isolation and Correlation analysis page
	Viewing the Event Analysis

	Appendix. Accessibility
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	S
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

